
Risking Code

Software Art – Dilemmas and Possibilities

Brogan Bunt

PhD Dissertation

School of Art & Design

Faculty of Creative Arts

University of Wollongong

2007

Abstract

This thesis focuses on the emerging field of software art. It is concerned with questions

that arise in relation to efforts to think the field of software, and software programming

particularly, in aesthetic terms. Centrally, how can software as a technical field of

production, as a form of engineering and as a space of abstract, instrumentally-oriented,

system elaboration, possibly correspond to art? What are the dilemmas that the notion of

software art confronts? How can its space of opportunity be conceived? These questions

are pursued not only at a general theoretical level but in terms of aspects of my own

software art practice.

The thesis begins by considering the ambivalent character of software, examining how it

mediates between dimensions of machine process and human agency and how this

potential has been conceived in cultural theoretical terms. It then outlines the specific

formal features of software programming and reviews competing perspectives of

software practice. This description of the software medium establishes a foundation for a

specific consideration of the field of software art. I trace the historical emergence of the

genre, examine how it has been theoretically conceived and consider a range of

exemplary works. I then specify three key dilemmas that confront software art: the

dilemma of position (how can software art conceive its relation to the larger economic

and discursive space of the software industry?); the dilemma of visibility (how can

software art conceive its efforts to make code visible when software itself determinedly,

structurally, hides?); and the dilemma of recursion (how is software to avoid an exclusive

and disabling emphasis on self-reflection?). In the remaining portion of the thesis, these

dilemmas are considered within the specific context of examining issues and aesthetic

strategies within my own work.

My overall argument is that software art represents a permeable discursive space that

discovers an aesthetic potential less by resisting the spectre of conventional software than

by risking an intimate relation to this alien terrain. Rather than a calm appropriation of

software by art, it represents an unsettling of art by means of software.

ii

Thesis Certification

I, Brogan Bunt, declare that this thesis, submitted in partial fulfillment of the

requirements for the award of Doctor of Philosophy, in the School of Visual Arts and

Design, in the Faculty of Creative Arts, University of Wollongong, is wholly my own

work unless otherwise referenced or acknowledged. This document has not been

submitted for qualification at any other academic institution.

Brogan S Bunt

21 January 2007

iii

Acknowledgements

I would like to thank my supervisors Professor Diana Wood Conroy and Professor

Amanda Lawson for their advice and encouragement. They managed to combine general

patient indulgence with the odd timely poke in the ribs – both strategies proving very

helpful.

I would also like to thank my partner, Deborah Jenkin, for reading all the drafts, gently

making suggestions and being very kind about my various ‘scholarly’ idiosyncracies.

Probably also sensible to thank my youngest son, Axel, for getting on with Christmas in

Perth without me. And my elder sons, George and Sam, deserve thanks for not

complaining about still not receiving Christmas presents.

I have also appreciated the support of my father, Professor John Bunt, and stepmother,

Eleanor Bunt, who have come along to my exhibitions and provided very useful sounding

boards for ideas.

This dissertation is dedicated to my mother, Joan Aileen Vance, who was always keen to

see me get my doctorate and who died in late 2005. I regret that I did not finish this

sooner.

iv

Table of Contents

Page
Title Page i
Abstract ii
Candidate’s Declaration iii
Acknowledgements iv
Table of Contents v
List of Figures vi

Chapter 1 Introduction 1
Chapter 2 Software 7
Chapter 3 Code 23
Chapter 4 Software Art 41
Chapter 5 Oblique Reflections 65
Chapter 6 Software Art and the

Instrumental 83
Chapter 7 Openings 107
Chapter 8 Conclusion 121

Bibliography 124
Creative Works 131

v

List of Figures

Chapter Figure Title Page
2 1 Paul Pfeiffer, The Long Count (2001) 19
3 2 The notion of a variable 24
3 3 The notion of a generic function 25
3 4 ‘Spaghetti’ code 27
3 5 Structured programming 28
4 6 Alex Galloway, What You See Is What You Get (2002) 52
4 7 Maciej Wisniewski, The Meaning of Life Expressed in

Seven Lines of Code (2002)
53

4 8 Brad Paley, CodeProfiles (2002) 54
4 9 John Klima, Jack and Jill (2002) 55
4 10 Martin Wattenberg, ConnectApplet (2002) 56
4 11 Mark Napier, SpringDotsApplet (2002) 56
4 12 Scott Snibbe, Tripolar (2002) 57
5 13 JODI, Untitled Game – Arena 76
5 14 JODI, Untitled Game – A-X 76
5 15 JODI, Untitled Game – Q_L 77
5 16 Brogan Bunt, Anachronism (2006) 81
6 17 Brogan Bunt, Cropper_Propper_Gridder (2005)

design concept
100

6 18 Brogan Bunt, Cropper (2005) interface 102
6 19 Brogan Bunt, Propper (2005) interface 103
6 20 Brogan Bunt, Gridder (2005) interface 104
6 21 Brogan Bunt, Gridder (2005), Ice Time exhibition

(2005)
104

7 22 Brogan Bunt, Halfeti – Only Fish Shall Visit (2001) 111
7 23 Brogan Bunt, Halfeti – Only Fish Shall Visit (2001) 115
7 24 Brogan Bunt, Hotel (2002) 116
7 25 Brogan Bunt, Hotel (2002) spatial elements 116
7 26 Brogan Bunt, Hotel (2002) 117
7 27 Brogan Bunt, Hotel (2002) 117
7 28 Brogan Bunt, Walk (2006) 119
7 29 Brogan Bunt, Paphos (2006) 120

vi

Chapter 1: Introduction

Research Question

Software surrounds us. It appears as an industry, a terrain of functional tools and a

complex space of technical production. How can software as a form of

instrumental engineering possibly correspond to art? This thesis addresses this

question, focusing particularly on the writing of software – the various ways in

which programming can be conceived as a mode of creative practice. My

argument is that the thinking of code practice fundamentally unsettles conventional

notions of art as autonomous, non-instrumental and reflective. In its engagement

with the language and institution of software – especially in the necessity that

software art literally function, that it operate – art is compelled to re-evaluate its

sense of cultural identity. This encounter between two conventionally distinct

modes of making takes shape not only as a set of dilemmas – of position, of

association, of orientation and of delineation – but also, in an integral manner, as a

field of creative possibility. Software programming discovers a ‘speculative’

(Fuller, 2003: 29) aesthetic dimension and art discovers a mode of practice that

cannot be reduced to the twin removes of rarefied formalism or purely exterior

critique.

This question of the relation between software and art is addressed not only at a

general theoretical level but also in terms of my own work. A consideration of a

number of my software art projects provides a means of illustrating a conception of

software art as a permeable discursive space that engages fundamental cultural

tensions.

Project Background

This project emerges from just over a decade’s sustained creative engagement with

the field of computer programming. My background is in the field of media theory

and production. Sometime in the mid-1990s I became interested in the then

expanding field of multimedia. Fiddling around with ‘creative software’

1

applications such as Macromedia Director and Flash led me from basic slideshows

and interactive websites to the reinvention of simple arcade games and more

ambitious projects. As my programming skills improved, I found myself moving

away from proprietary multimedia software applications to more general, system-

level programming languages such as Java. I was no longer a media producer who

dabbled in programming, I had become a programmer who dabbled in media

production. While I produced all kinds of projects during this time – the

interactive documentary project, Halfeti – Only Fish Shall Visit (2001), the

experimental game project, Hotel (2002), the large oral-historical website, Midland

Railway Workshops (2003), and the meditation on decomposed video time,

Cropper_Propper_Gridder (2005) – I was increasingly aware that my practice was

awkward to describe. It could be called ‘multimedia’ or ‘new media’, but this

seemed to ignore the vital dimension of code. My work was very much about re-

imagining media in terms of the language and discursive forms of computer

programming. Lacking a better term, I tended to describe my more experimental,

less professionally-geared projects as ‘code-based art’. I was very pleased a few

years ago when I came across the term ‘software art’ because it provided a context

for my work that extended beyond simple technical determination and beyond the

endless effort to distinguish ‘old media’ from ‘new media’. The notion of software

art, as articulated by authors such as Florian Cramer (2002) and Mathew Fuller

(2003), opened up a vital means of making sense of my work within a larger art-

historical and conceptual context. This thesis emerges as an attempt to elaborate

this understanding in a formal and systematic manner.

It is worth noting, however, that my work veers from the ordinary conception of

software art, which tends to take characteristic shape in work of formalist

abstraction or political meta-commentary (Cramer, 2002: 10). My work retains an

interest in media and mediation that links back to my earliest interests in

photography, video art and experimental audio. One of my key arguments is that

this should not be regarded as altogether antithetical to the concerns of software art

– that software art can do more than simply reflect upon its apparent self-contained

2

material and cultural conditions, that it is constituted by openings rather than by

any horizon of self-collected closure.

The creative portion of my dissertation includes the following works:

• Halfeti – Only Fish Shall Visit (2001): interactive documentary project

focusing on a small Turkish town on the banks of the Euphrates River prior

to its flooding by a large hydro-electrical project.

• Hotel (2002): experimental game project that represents an ironic reflection

on notions of generative space.

• Cropper_Propper_Gridder (2005): a suite of tools for decomposing video

sequences and playing them back as independent sections. When first

exhibited the project employed footage from the Ross Sea region of

Antarctica.

• Anachronism (2006): an anachronistic 3D graphics engine.

• Paphos (2006): a DVD of shots from the margins of an Australian

archaeological project in Paphos, Cyprus. This is not a literal code-based

project but represents a thinking of video in terms of code.

These works are discussed in Chapters 5, 6 and 7 of this dissertation. I enclose the

projects on two DVDs. The first DVD, marked ‘A’, contains copies of the first

four projects listed above. It is a data DVD and must be accessed on a computer.

At the top level of this disk, you will find a file named ‘index.html’. Open this file

to obtain instructions about how to view the various projects. This file also links to

a range of background information concerning the production and creative

conceptualization of the works. The second DVD, marked ‘B’, contains the

Paphos project and is viewable on a standard DVD player (as well as on a

computer with DVD playback software).

Theoretical Background

I deliberately restrict my discussion, as far as is possible, to work that engages with

3

the culture and aesthetics of software. It is worth indicating, however, that my

approach is strongly informed by strands of post-structuralist philosophy which

question the traditional opposition between the human and the technological.

Rather than being cast as an altogether alien phenomenon, which appears either

(and both) as a subservient tool or as an exterior threat, technology comes to be

associated, more positively, with a dimension of enabling non-identity that

provides the basis (and non-basis) for any space of manifestation. Most famously,

the French philosopher Jacques Derrida (1976) argues that ‘speech’ is actually

preceded by the logical possibility and material operations of ‘writing’. If there is

the possibility of speech, according to Derrida, then it is not as the index of a pure

domain of self-present thought but of the play of (technological) signs. More

recently, another French philosopher, Bernard Stiegler (1998), argues that human

culture is characterized precisely by the elaboration of a technological exterior (‘As

a “process of exteriorisation,” technics is the pursuit of life by means other than

life’ (Stiegler, 1998: 17)). From this critical perspective, technology appears as an

intimate human potential which serves also to announce the limits of the human (as

traditionally conceived).

For my purposes, this unsettling of the boundaries between the human and the

technological provides a means of questioning the relation between art and

software. Software programming projects a space of communication with the

technological nature of software. The latter entails processes both of rational,

instrumental abstraction and of unconscious, non-reflective operation which work

together to unsettle the reflectively constituted autonomy of critical avant-garde

art. To engage aesthetically with software is not only to summon it to the table of

art, it is to risk a passage into the aesthetic alienation and unconsciousness of

technical process.

I should note that I adopt a broadly cultural theoretical approach, but draw upon

aspects of computer science to describe the technical nature of software and

programming. There is a need, in my view, to appreciate the specific discursive

4

character of software as a basis for properly examining its cultural and aesthetic

implications.

A note on terminology: I often speak of ‘code’ and ‘coding’ instead of referring,

more formally, to ‘computer programming’.

Outline of Dissertation

Chapter 2 examines the notion of software, considering it at both a technical and a

cultural theoretical level. It examines how the software-hardware relation is

conceived within computer science and also how four key new media and software

art theorists conceive the cultural and aesthetic character of software. Overall, I

stress that software represents a mixed technical and cultural space which opens up

a dialogue between machine and human and combines elements of abstraction and

materiality.

Chapter 3 addresses computer programming specifically. It provides an overview

of the main formal features of high-level language programming and considers a

variety of competing – at times opposed – perspectives concerning the nature of

programming practice.

Chapter 4 focuses on the contemporary field of software art, discussing its history

and theoretical conception and examining the split between formalist and critical-

cultural tendencies. The final portion of the chapter specifies three dilemmas that

confront software art as a mode of creative practice: the dilemma of position (how

can software art conceive its relation to the larger economic and discursive space

of the software industry?); the dilemma of visibility (how can software art conceive

its efforts to make code visible when software itself determinedly, structurally,

hides?); and the dilemma of recursion (how is software to avoid an exclusive and

disabling emphasis on self-reflexivity?).

Chapter 5 takes up the first dilemma of position in the specific context of

considering a range of strategic means of engaging with the industrial-discursive

space of the 3D graphics engine. I focus on the strategy of anachronism, which

5

involves resisting novelty and deliberately re-working aspects of the coding

tradition. My 3D graphics engine, Anachronism, provides an illustration of this

strategy.

Chapter 6 confronts the second dilemma of visibility, which is linked to the

instrumental character of software. Rather than resisting the instrumental, I argue

that software art should acknowledge its inevitable relation to the functional

dimension of software and engage with it as a field of poetic potential. As a means

of highlighting problems associated with the repression of the instrumental within

software art, I consider my work, Cropper_Propper_Gridder, which is constituted

vitally as a suite of tools.

Chapter 7 addresses the third dilemma of recursion. This dilemma relates to the

sense of closure in software art – the sense that it can do nothing but reflect upon

its own conditions. Opposing this model of disabling self-reflection, I describe a

range of specific possibilities of opening that are relevant to my own work. I focus

specifically on strategies evident in Halfeti – Only Fish Shall Visit and Hotel.

Chapter 8 is the conclusion. I summarize my argument and suggest the need for a new

conception of software art practice. Rather than adhering to the twin fantasies of pure

software formalism or pure software critique, there is a need to explore a messier, more

complicit and more open space of creation. The various dilemmas of software art, at

their limits, suggest areas of aesthetic possibility.

6

Chapter 2: Software

Introduction

Software is an ambiguous space, partly entwined in the alien complexity of binary

processes and partly shaping multiple layers of human access. It abides within the

machine but is also abstracted from it. As a vital context for choreographing the logic of

technical systems and dimensions of human interaction, software programming mediates

between the mechanical and the human, the abstract and the material, and the

instrumental and the aesthetic. In its refusal to fall on one side or the other of these

conventional oppositions, the work of software creation appears as a space of dialogic

exchange and unsettling.

Software shares the suffix ‘ware’ with its semantic other, hardware. Conventionally, the

term ‘ware’ denotes ‘articles of merchandise or manufacture, or goods’ (Macquarie,

1992). It suggests a context of physical manufacturing and sale. The metaphor of

traditional material-economic relations provides then a means of conceptualizing the less

directly accessible processes and products of the information economy. For my purposes,

the presence of ‘ware’ within ‘software’ serves as a sign of an element of semantic and

cultural-contextual tension. Despite the importance of the commercial art market, works

of art tend not to be conceived as ‘wares’ but as critical, expressive, non-instrumental

things. Alongside any thinking of the relation between technical computer science and

the sphere of art practice, the juxtaposition of ‘software’ and ‘art’ also brings into play

broader issues of art’s notional differentiation from the ‘non-art’ spheres of industry and

commerce (and instrumental rationality generally).

This chapter considers how software is conceived within computer science, as a basis for

then examining various cultural theoretical perspectives on software. My particular

interest is in how the contemporary critical and creative concern with software

programming emerges as a reaction to the notion of new media.

Software and Computation

In the early 19th century, the British industrial inventor, Charles Babbage, designed three

7

(partly realized) calculating engines. The first two engines, Difference Engines no.1 and

no.2, were machines for calculating fixed tables of values. The last machine, the

Analytical Engine, was a more ambitious project which was never actually completed. It

was envisaged as a general purpose machine that could perform any specific

mathematical algorithmic process. The structure of this flexible, programmable machine

was articulated in terms of analogies from the field of industrial textile manufacturing. It

was composed of a ‘store’ that held values (raw yarn and finished textiles), a ‘mill’ that

processed (wove) the yarn into textiles, and ‘trains’ of logical procedures that controlled

the functioning of the ‘mill’ (Babbage, 2005: 282-293). In terms of contemporary

computation, the ‘store’ represents memory, the ‘mill’ represents the central-processing

unit, and the ‘trains’ (of thought) represent software. While there was no direct analogy

from textile manufacturing to describe software, this vital work of logical coordination

was to be implemented through punch cards borrowed from the technology of the

Jacquard Loom (an early technology for mechanizing the production of patterned

textiles). In this sense, the binary, array-based patterns of the Jacquard Loom punch

cards provide a link between long cultural traditions of textiles practice and the emerging

technology of computation. For me, this is suggestive of the opening of computation to a

legacy of logical and aesthetic pattern-making that long precedes the specific forms of

digital media.

The design of the Analytical Engine indicates the centrality of software to the conception

of modern computing. A computer is conceived as a flexible machine rather than as a

traditional, single-purpose mechanical device. The dimension of programmable software

is what enables a computer to be reconfigured as a typewriter, a darkroom, a video-

editing system, a public forum, and so on. If industrialization produced a plethora of

complex single purpose machines, post-industrialization produces a core generic machine

that can adopt multiple forms - that can simulate other machines via the dimension of

programmatic abstraction.

In 1936, exactly one century after Babbage began work on his Analytical Engine, the

British mathematician Alan Turing (1995) described the structure and discrete

functioning of a ‘universal machine’ (Agar, 2001; Copeland, 2004). This virtual machine

8

could be programmed, like the Analytical Engine, to perform any specific mathematical

operation. There was, however, a crucial point of difference. Whereas Babbage had

struggled to implement decimal numerical representation, Turing represented dimensions

of value and procedural process in a common binary numerical format. Both

instructional code and calculated results were conceived as sequences of 0s and 1s, which

provided the crucial key to constructing an actual computer. This synthetic

representation worked simultaneously to abstract dimensions of material value and to

materialize dimensions of symbolic logic. The richness of complex things (texts, images,

sounds, etc.) finds itself amenable to binary articulation while processes of logical

abstraction (mathematical algorithms) become embedded within a common material-

digital substance. Furthermore, the latter gain the capacity to execute, to directly affect

the realm of digitally articulated things.

Computer science withdraws from this dimension of (metaphysical) uncertainty to the

extent that it conceives software as opposed to hardware. In conventional terms,

hardware refers to the physical-mechanical and electronic aspects of computation

(physical memory, input-output devices, etc.) whereas software designates the set of

formal instructions that direct machine processes and that are abstracted from the material

layer of digital circuitry (see, for example, Farouzan, 2003). Software, as a logical

algorithmic system, is conceived as floating above the hardware layer. Relative to the

material solidity of bits and pieces of metal and silicon, software appears virtual and

immaterial. While justifiable as a means of relative differentiation, this common sense

distinction obscures the vital sense in which computation works to unsettle the opposition

between the abstract and the material.

When Turing first described the modern computer in his 1936 paper ‘On Computable

Numbers, with an Application to the Entscheldungsproblem’, he described a hypothetical

machine that was designed, in fact, to pinpoint the limits of mechanical computation (via

the strategy of a recursive reductio ad absurdum) (Feynman, 1996: 81). In this sense, the

computer was originally a speculative, immaterial, ‘soft’ machine that ‘functioned’ to

provide a critique of the possibility of absolutely determinable (mechanical) outcomes.

At a more general level, the modern computer and its underlying digital circuitry is the

9

material embodiment of the abstract system of Aristotelian logic. In the 19th century the

mathematician, George Boole, represented this binary logical scheme in algebraic terms

and in the 20th century the telecommunications engineer, Claude Shannon, represented it

in physical electronic terms. The positive and negative charges of digital circuits are

‘hard’ to the extent that they are physical, material and machine-based, but their material

operation is thoroughly determined by a corresponding space of ‘soft’, speculative

abstraction.

Similarly, although software can be regarded as immaterial in its abstract, symbolic

character and in its emphasis on the virtual and potential nature of any given operational

system, it remains materially bound. The underlying instructions must be written. Text

files are compiled into binary files which are then executed or interpreted to create

patterns of discrete voltages in RAM. The code layer is scarcely ever visible to the end-

user (it is hidden beneath the interface) and the speed of software operations (at the

machine level) typically exceeds the capacities of human perception, but material

processes are nonetheless still at play.

Overall, then, the neat distinction between hardware and software misses the point.

Computation, as both software and hardware, highlights a dimension of ambiguity in the

relation between matter and non-matter. It structures permeable relations between spaces

of virtual, symbolic abstraction and material, instrumental functioning.

Alongside its notional immateriality, software also represents a channel of ‘soft’, human

access to the invisible and arcane functioning of the digital machine. Access is enabled at

a number of different levels. At the lowest levels, machine code and assembly language

provide very intimate (relatively ‘hard’) access to machine functioning, doing very little

to protect the programmer from the demands of binary and hexadecimal modes of

representation, the intricacies of central processor functioning and the complexities of

system architecture (buses, memory registers, devices and the like). Higher-level

language computer programming, while obscure to non-programmers, provides a more

accessible and natural language-based means of choreographing digital processes.

Underlying mechanisms are abstracted, opening up a space of communication between

10

human and machine modes of representation and processing. C, C++ and Java are

common examples of high-level programming languages. At the top (most abstract)

level, graphic user interface (GUI) application software provides the ‘softest’ point of

access to the computer. The conventional and never quite satisfactorily attainable aim of

GUI developers is to make software operation seem as natural, human and intuitive as

possible – to make the machine, and the relation to the machine, effectively disappear.

In slipping between the technical ‘back-end’ of coded machine instructions and the

experiential ‘front-end’ of the graphic user interface, software emerges within computer

science as a multi-layered and elusive concept, resisting all attempts to pin it down to any

one essential material or virtual state and to any one side of the human/machine divide.

My specific interest is in the intermediary space of high-level language programming. In

the following chapter I offer a non-technical overview of the field, considering both its

formal features and its character as a specific mode of creative practice. In the remainder

of this chapter I consider a variety of contemporary conceptions of the creative space of

software.

Conceiving Software

The German media theorists, Florian Cramer and Ulrike Gabriel, argue that the sphere of

software production ‘has a long history of being overlooked as artistic material and as a

factor in the concept and aesthetics of a work’ (Cramer and Gabriel, 2001: 1). The

contemporary concern with software art emerges as a reaction to the dominant conception

of digital art as a new form of media. The jury statement for the 2001 Berlin

transmediale.01 festival software art award pointedly distinguishes their concern with

software from a more conventional concern with media:

This award is not about what is commonly understood as multimedia – where the

focus is on data that can openly been [sic] seen, heard and felt. This award is

about algorithms; it is about the code which generates, processes and combines

what you see, hear and feel. (Transmediale.01 Media Arts festival jury, 2001)

11

Software can slip into the background of multimedia/new media practice not only due to

its invisibility but due to its awkward instrumental character. Programming is all too

often relegated to a sphere of technical implementation (indeed many new media artists

outsource their coding to professionals).

Despite this sense of resistance to the notion of new media, it needs to be acknowledged

that the possibility of software art has emerged from within the thinking of new media.

The ‘newness’ of the latter has inevitably demanded a close consideration of the

computational conditions of contemporary media. The creative field of software

production has gained prominence as artists have developed increased computational

literacy and new media theory has engaged more thoroughly with the implications of

linking media and computation.

The work of Lev Manovich provides the clearest example of how a thinking of software

can emerge from a thinking of new media.

From Media to Software

In The Language of New Media (2001), Manovich provides an influential formal-

materialist account of new media. He explains the development of new media in terms of

the convergence of ‘two separate historical trajectories: computing and media

technologies’ (Manovich, 2001: 20). Both can trace their origins to the early part of the

nineteenth century. Babbage’s Analytical Engine provides the point of entry to the

computing tradition, while Daguerre’s daguerreotype provides the initial scene for

modern media (Manovich, 2001: 20). The synthesis of these two traditions renders all

media in the common form of computable data:

The translation of all existing media into numerical data accessible through

computers. The result is new media – graphics, moving images, sounds,

shapes, spaces, and texts that have become computable; that is, they

comprise simply another set of computer data. (Manovich, 2001: 20)

Drawing explicitly upon the discipline of computer science, Manovich (2001) defines

new media in terms of a set of five logically-ordered principles. The first and most

12

fundamental principle is numerical representation. Digital processes represent all

media in binary numerical form. This opens up the potential for algorithmic

manipulation. The second principle is modularity. From the tiniest level (bits and

bytes) to higher level structures, media elements have an independent status; they are not

tied up in a continuous and fixed whole, but can be disassembled and are subject to many

varied processes of recombination. The third principle is automation. The algorithmic

character of crucial processes of new media ‘creation, manipulation and access’

(Manovich, 2001: 32) unsettles and partially removes the necessity for human agency and

duplicates (simulates) many of the latter’s characteristic features (perception,

intelligence, memory). The fourth principle is variability. Due to their underlying

numerical status and structural modularity, new media objects are not restricted to a

single fixed, formal identity, but can take multiple forms and meet all kinds of specific

contextual needs. Variability is vital to Manovich’s definition of new media:

It becomes possible to separate the levels of ‘content’ (data) and interface.

A number of different interfaces can be created from the same data. A

new media object can be defined as one or more interfaces to a multimedia

database. (Manovich, 2001: 37)

The fifth and final principle is transcoding. Computer based structures and processes

affect the ‘traditional cultural logic of media’ (Manovich, 2001: 46). Manovich argues

that ‘what can be called the computer’s ontology, epistemology, and pragmatics –

influence the cultural layer of new media, its organization, its emerging genres, its

contents’ (Manovich, 2001: 46). For this reason, Manovich suggests that:

To understand the logic of new media, we need to turn to computer

science. It is there that we may expect to find the new terms, categories,

and operations that characterize media that become programmable. From

media studies, we move to something that can be called ‘software studies’

– from ‘media theory’ to ‘software theory.’ (Manovich, 2001: 48)

13

Gradually, then, through the process of describing the fundamental principles of new

media, Manovich moves away from a traditional conception of media towards a

conception of software. This passage, this transition, is highly useful, but it is also

unstable. The relation between media and software (as a form of computation) slips

uncertainly between historical confluence, base-superstructure determination, analogy

and identity. Manovich typically associates new media with a potential that takes shape

on the basis of computation but that is not identical with computation itself. He argues,

for instance, that ‘[a] new media object can be defined as one or more interfaces to a

multimedia database’ (Manovich, 2001: 37). Here new media appears as the interface to

computational forms and processes. It is the visible and logical consequence of an

underlying work of variability rather than itself coextensive with this space of

abstraction. At another moment, however, he argues that ‘a new media object typically

gives rise to many different versions’ (Manovich, 2001: 36). In this instance the object

itself partakes of variability and hence appears more closely linked to the possibility of

software. New media is cast ambivalently as both the experiential product of an anterior

work of generative abstraction and as itself intimately engaged in variability.

Although the overall structure of Manovich’s conception of new media suggests a notion

of media reconceived and reshaped in terms of the model of computation, a sense of

lingering distance remains. For example, in relation to the principle of modularity,

Manovich argues that structured programming serves as an analogue for the modularity

of new media. He suggests, however, that this analogy should not be taken literally:

If a particular module of a computer program is deleted, the program will not run.

In contrast, as with traditional media, deleting parts of a new media object does

not render it meaningless. (Manovich, 2001: 31)

Within this context new media appears distinct from software. It is analogous to software

but differs to the extent to which modularity is enforced.

At one level, these strands of ambivalence can be regarded as a means of teasing out a

theory of software from the strangeness of digital media. However, at another level they

14

can be regarded as a means of subsuming software under the traditional sign of visible,

audible media. From my perspective, the instability of his conception of new media

highlights the instability of software itself, which encompasses dimensions both of

abstraction and of experiential engagement. Manovich makes a vital contribution

towards elaborating a theory of software by describing the limits of media, the moments

in which it passes away from itself.

Rejecting Software

In a deliberate, playful provocation, German media theorist, Friedrich Kittler, recognizes

software but subjects it to a strategic disavowal. Adopting a strongly technological

determinist standpoint, Kittler argues that software constitutes an illusory means of

human control over technological systems that have already usurped our human powers –

that are no longer secondary tools but primary agents. In a 1999 message to the nettime

mailing list, Kittler argues:

The billion-dollar business called software is nothing more than that which the

wetware [human beings] makes out of hardware: a logical abstraction which, in

theory – but only in theory – fundamentally disregards the time and space

frameworks of machines in order to rule them. (Kittler, 1999)

He regards software as a mystification – seeming to facilitate human creative-

instrumental agency over the realm of machines but actually only a secondary result of

underlying relations that are determined at the hardware level. Kittler deliberately

reverses the humanist paradigm and embraces the ‘pure’ exteriority of the machine. It is

the lowest-level instrumental means that shape systems of functioning and

communication, as well as the imaginative possibility of abstraction, goals and,

ultimately, human subjectivity itself:

When texts, images, and sounds are no longer considered the impulses of brilliant

individuals but are seen as the output of historically specified writing, reading,

and computing technologies, much will already have been gained. (Kittler, 1999)

15

Kittler’s argument reveals an affinity with post-structuralist critiques of human

subjectivity in terms of the motif of language. The French philosopher Jacques Derrida’s

(1976) insistence on the priority of writing (material, technical, secondary and exterior)

over speech (abstract, human, primary and interior) provides a clear example. However,

if writing gains priority over speech within Derrida’s philosophical scheme, it is not in

order to produce a simple reversal; rather, the priority of writing serves as a means of

unsettling the thinking of priority itself and of the categorical differentiation between

technical exterior and human interior. It represents an effort to think ‘beyond’ or ‘across’

conventional categories. Kittler’s reversal asserts the priority of the machine, but leaves

the machine/human opposition intact. His devaluation of software is significant. Rather

than regard software as an indeterminate space of dialogue, he aligns it altogether with

the human. Only the machine itself – in its notional purity – is sufficient to represent the

other of the human.

Despite this tendency to allow the machine its utter inhumanity, Kittler’s reversal

has considerable value as a means of countering the common tendency to regard

the field of computation as simply a ‘tool’ that human agents master to realize their

creative ideas. He suggests the need to consider how the dimension of the creative

concept is shaped by the material and immaterial conditions of computation. The

problem, however, is that he reduces this relation to one of determination when

something more subtle and complex is occurring, when it is a matter of the blurring

and unsettling of boundaries. Software is neither human nor inhuman but a curious

terrain in which technical syntax and protocols become mingled with human

cultural-imaginative concerns.

Neglecting Software

In New Philosophy for New Media (2004), Mark Hansen contrasts traditional media to

digital media in terms of their differing modes of embodiment. He argues that traditional

(particularly cinematic) media separates the viewer from the objective character of the

work (rendering the viewer immobile), whereas digital media makes the body the new

medium for the work – the formal and material basis for the work’s concrete appearance.

Hansen draws upon Rosalind Krauss’s notion of the ‘post-medium condition’ (Krauss,

16

1999: 32) to describe the aesthetic implications of digitization. Just as contemporary

‘post-media’ art is aggregative and exceeds its technical support, so the digital image as a

collection of ‘numerical fragments’ (Hansen, 2004: 35) represents an aggregate that lacks

any necessary technical frame. He argues that ‘[r]egardless of its current surface

appearance, digital data is at heart polymorphous: lacking any inherent form or

enframing’ (Hansen, 2004: 35). No longer, in his view, constituted by an external

material support (a traditional medium), the digital image gains provisional coherence

through an embodied work of interactive perception. In relation to Manovich’s definition

of new media, Hansen emphasizes the features of numerical representation, modularity

and variability in order to position the new media art work as a liquid phenomenon that

only properly coheres as it is humanly experienced.

The problem for me here is the lack of recognition of intervening technical layers.

Hansen fails to acknowledge that we never actually encounter strings of bits and bytes

directly. Digital data is subject to many layers of abstraction and systematic organization

prior to becoming ‘humanly’ accessible. The body (or notions of interactive perception)

are certainly implicated in the work of engaging with the digital image (particularly in

relation to game environments, virtual and augmented reality systems and the like), but

this sense of embodiment is constituted via vital layers of software that mediate between

data and experience, that represent and frame data to facilitate relations of embodied

perception. While acknowledging the abstract and variable nature of the underlying data

structure, Hansen fails to adequately consider how this is articulated, choreographed and

conceived to shape any specific possibility for embodied interaction. In this manner, the

crucial abstract-conceptual and material-discursive space of software is ignored.

In their famous 1977 anticipation of contemporary forms of new media, ‘Personal

Dynamic Media’, Allen Kay and Adele Goldberg (2003) describe computing as a

‘metamedium’:

Although digital computers were originally designed to do arithmetic

computation, the ability to simulate the details of any descriptive model means

that the computer, viewed as a medium, can be all other media if the embedding

17

and viewing methods are sufficiently well provided. (Kay and Goldberg, 2003:

393-4)

The crucial insight here is not that the computer is polymorphous (a multimedia

chameleon) but that it transcends the dimension of sensible, formal, medium-based

identity. A computer can simulate any media because it is defined by an order of

abstraction, of flexible logical-systematic articulation. It is defined, in other words, by

the possibility of software. The problem with Hansen’s conception of embodied

interaction is that it ignores the underlying layers of organization that structure and

facilitate the field of sensible appearance.

Hansen’s preference is for large-scale installation new media work in which the

computer and processes of computation are largely hidden away out of view. The

emphasis is upon images, spaces and contexts of free kinaesthetic interaction rather

than upon the mixed material and abstract space of coded instructions or the

sensibly restricted space of conventional human-computer interaction (monitor,

keyboard and mouse). Criticizing the conservative character of the conventional

human computer interface (HCI), Hansen argues:

The fact that the HCI extends the sway of immobility must be seen as an

occasion for criticism of the cinematic heritage of new media, and beyond

that, for exploration of unheeded or unprecedented alternatives. (Hansen,

2004: 35)

Conventional screen-based software appears as a dull relic, inevitably

compromised by its adherence to the (non) interactive conventions of cinema. This

represents a privileging of physical, sensible modes of engagement over abstract-

symbolic and cognitive forms of interaction. For example, in considering Paul

Pfeiffer’s digital video work, The Long Count (2001) – a representation of a boxing

match in which the boxer’s bodies are removed, leaving only cheering crowd,

stretching ring ropes, etc. – Hansen argues that ‘it is the viewer’s body in itself

18

(and no longer as an echo of the work’s “content”) that furnishes the site for the

experience of the “work’s” self-differing medial condition’ (Hansen, 2004: 34).

Fig.1: Paul Pfeiffer, The Long Count (2001)

Whereas another reading may have stressed the conceptual point of deliberately

displaying an absence, of erasing the central point of interest while leaving in place

its visible support and effects, Hansen focuses entirely on the embodied

apperception of the work. This devaluation of cognitive, semiotic modes of

interaction explains his lack of interest in genres that are of central concern to my

study, political net art and conceptually inclined software art. While his notion of

new media embodiment may provide a refreshing antidote to the discourse of post-

humanism, it obscures the underlying conditions of new media - its status not only

as experiential field but as the trans-sensible space of software.

Acknowledging Software

Cramer (2005) avoids the kind of polarized view of digital processes that is

characteristic of Kittler and Hansen, and very explicitly makes a shift towards

‘software theory’ (Manovich, 2001: 48). One of the central theoretical voices in

the development of the contemporary notion of software art, Cramer conceives

software as a mixed technical and cultural phenomenon in which contradictions are

19

encompassed and conventional opposites intersect and coincide. Against narrowly

technical perspectives, he argues that software is a mode of cultural practice that

includes algorithms, coded machine instructions, human interaction and a more

general space of ‘speculative imagination’ (Cramer, 2005: 124). Rather than

restrict software (and the computational imaginary) to digital computation per se,

Cramer sketches a much broader history that takes in traditions of religion, magic,

mathematics, combinatory aesthetics and philosophy. Some of these traditions are

concerned with divine algorithms, others with natural ones. Some conceive

computation as an ecstatic practice, others as a rational, pragmatic one. Some

project the possibility of systematic unity, others disassemble and deconstruct.

Linking all of these tendencies together, in his view, is an underlying concern with

negotiating a passage from the abstract to the material:

Computation and its imaginary are rich with contradictions, and loaded

with metaphysical and ontological speculation. Underneath those

contradictions and speculations lies an obsession with code that executes,

the phantasm that words become flesh. (Cramer, 2005: 125)

Cramer is explicit about the Biblical reference. He quotes from the Gospel of John in the

New Testament: ‘In the beginning was the Word […] And the Word was made flesh’

(Cramer, 2005: 14). Whereas Kittler strictly limits this magical capacity to digital

machine processes, arguing that ‘[t]here exists no word in any ordinary language which

does what it says’ (Kittler, 1999), Cramer conceives the link between the domains of

abstraction and materiality as just as significant in its speculative and imaginary aspect as

in its material technical implementation. In this respect, Cramer brackets the necessity

that software be executed. Apart from permitting him a much wider historical-cultural

compass, this enables a notion of imaginary, desiring execution (software as ‘phantasm’

(Cramer, 2005: 125)).

While this strategy has considerable merit, opening the notion of software up to much

wider currents of cultural practice and philosophical reflection, it also runs the risk of

losing sight of the specificity of contemporary software practice. For my purposes,

20

software art involves a vital dialogue with the event-space of machine execution. The

intimate, dialectical relation between processes of abstraction and the field of execution,

of defining algorithmic systems and then setting them to work or at play, is constitutive

of my experience of programming software. It is worth noting that the relation between

‘words’ and ‘flesh’ has another dimension within software. It is not only that abstract

becomes material, but also that the material becomes abstract. Programming code, as I

have suggested, is material text that describes and shapes the functioning of abstract

systems. ‘Words’ in this sense can also be regarded as a kind of ‘flesh’ (or as the

coincidence of the technical-material and the technical-schematic). There is a passage

back and forth between abstract and material within software practice – the relation is not

at all unilateral.

My other qualification regarding Cramer’s conception of software is that it pays much

more attention to magical and aesthetic conceptions of software than to rational

instrumental ones. Pythagorus, Kabbalah, Lull, and the Oulipo figure as key historical

antecedents, whereas Aristotle, Boole, Babbage and Turing appear as bit players or are

neglected altogether. This imbalance is prompted, no doubt, by Cramer’s central concern

with elaborating a notion of software art, but it has the consequence, once again, of

belittling the space of execution. Everything that shapes software as instrumental, as a

work that is crucially concerned with issues of generic and actual functioning, becomes

secondary. In the process, the vital dialectic within software art between art and the

‘non-art’ realms of engineering and technical implementation slips into the thematic

background. As I have suggested, one of my major goals in this project is to consider the

contours of this awkward relation.

Conclusion

In its capacity to take in both the technical space of algorithms and the human space of

interface and interaction, the notion of software is difficult to pin down to any particular

mode of material or conceptual being. Cramer offers a cultural conception of software

that encompasses algorithmic technical functioning, dimensions of human meaning and

use, and a wider context of philosophical, speculative imagination. More specifically, he

links software to a self-conscious work of algorithmic invention and interaction. He is

21

far less concerned with software as a ‘transparent’ vehicle for human instrumental or

creative intention than as a terrain of reflective engagement with aspects of algorithmic

system and process. Whereas Kittler associates software with a dimension of illusory

(non-technical) human agency and control, Cramer associates it with a critical

engagement with typically hidden dimensions of technical process. It is within this

context that he and Ulrike Gabriel employ the notion of ‘software art’ as a means of

indicating a realm of creative practice that is all too often obscured by the conventional

emphasis on the front-end of ‘new media’ (Cramer and Gabriel, 2001).

For my purposes, finally, the value of the term ‘software’ hinges less on its rigorous

conceptual specificity than on its ambiguity and connotative richness. Although software

can appear opposed to hardware in the same way that the mind is opposed to the body

and the abstract is opposed to the material, from another perspective software holds this

distinction within itself. It is not simply ‘soft’, it is also a ‘ware’ – a hammered, battered,

commercial-manufactured thing. Software suggests a mixed conceptual, cultural,

economic-industrial and technological space.

22

Chapter 3: Code

Introduction

In the previous chapter I examined the general notion of software, stressing its vital

ambiguity – its capacity to engage both human and machine dimensions of computational

process. In this chapter I consider the specific field of high-level language programming.

This is the field in which I produce my own software art work. It is constituted precisely

as a space of intimate communication between human and machine processes and its key

formal discursive features of abstraction, disguise and instrumental operation will prove

vital to my questioning of the conventional conception of software art in subsequent

chapters. I begin by reviewing these features, with a particular emphasis on examining

the principles that inform the structure of contemporary object-oriented programming,

and then go on to consider programming as a specific mode of making. If code

represents an abstraction of industrial forms of production, then it also passes beyond the

model of the assembly line, opening up a mode of practice that encompasses

contradictions – appearing at once both precise and logical, and experimental and

‘speculative’ (Fuller, 2003: 29).

Abstraction

Abstraction is fundamental to all forms of programming. Programming involves

abstracting states, processes and systems so that they can be represented in logical,

symbolic terms. It is a form of model-making in which every component is ultimately

decomposable into discrete binary states and logical operations. Abstraction not only

affects how problems are represented, it also shapes the structure of programming itself.

High-level language programming represents an abstraction of low-level computing

processes. Instead of wrestling with bits and bytes, memory registers and the like, the

high-level language programmer tends to deal with pre-defined data types that represent,

for instance, numbers, whole words or images, and with sophisticated algorithmic

functions that serve as abstracted ‘wrappers’ to more fundamental logical procedures.

Relations of programmatic abstraction are characteristic of every dimension of computer

processes.

23

Data and Algorithms

Programming is based on step by step procedures, algorithms. Algorithms can be

regarded as sets of instructions that manipulate data. Data represents the dimension of

content, while algorithms represent the dimension of process. There is nothing, however,

at the lower level that materially or symbolically separates them. Following Turing’s

model of the universal machine, they are both represented in memory as strings of 1s and

0s. High-level programmers, as I have suggested in the previous chapter, rarely deal with

binary data directly. In fact they rarely even deal with data directly. On the whole they

represent data as variables. The following variable ‘a’ is set to contain the integer value,

49.

Fig. 2: The notion of a variable

Variables may contain data or they may simply refer to memory addresses where data is

stored. Algorithms typically manipulate data through long chains of variable-based

mediation. Great care is taken to ensure that algorithmic processes themselves are

unaffected by any reference to actual data. Algorithms are conceived as generic

machines. They abstract some specific dimension of functionality. They process data

but do not allow the particularity of any specific data to structure their operations. The

following diagram of a percentage calculating algorithm (function) indicates that specific

values pass through the algorithm and specific output values emerge, but that the internal

procedures of the algorithm are generic.

24

Fig. 3: The notion of a generic function

It is not always possible to produce fully generic code, but typically the more generic an

algorithm the better its functioning has been abstracted and properly understood.

Variables are not restricted to holding single values. They can often refer to more

complex sets of data – arrays of values, for instance, that represent a collection of

potential states. The spatial structure of a chessboard can be represented, for example, in

terms of an array of 64 values, one for each square on the board. The array is an abstract

conception that bears no necessary relation to perceptible grid-like space, but the values it

contains can be interpreted mathematically in terms of logical spatial relations.

Numerical positions in the array can be calculated as references to specific row and

column positions. I remember how powerfully this recognition of the potential to

represent dimensions of perception in an imperceptible logical format affected me when I

first learnt about it. The gap between underlying data structure and interface suggested

all kinds of creative possibilities. For me, it was not simply a matter of recognizing a

work of logical abstraction, it was about the capacity to regard the visible interface as an

apparition – a guise – floating above the protean, re-combinatory potential of arrays of

data. Overall then a programmer defines not only generic algorithmic procedures but

also data structures that represent specific logically defined universes of manipulable

elements.

Program Structure

Line by line, programming inevitably involves processes of calculation, but there is more

25

to programming than just the discrete manipulation of data. Larger structures are

employed to choreograph program flow. The two fundamental forms are iteration and

conditional branching. For example, a ‘for-loop’ is an iterative form that repeats some

process a specific number of times, while an ‘if-statement’ is a conditional form that

selects an appropriate process depending upon specific conditions. These are formulaic

compositional features that shape the overall running of programs.

Beyond these syntactical features there are larger dimensions of program structure. A

typical program, say a simple game, functions in the following manner. The program

begins with an initialization phase in which technical display and interaction contexts are

established and fundamental data structures are constructed and assigned relevant values

(involving, perhaps, the loading of relevant game resources). The program then proceeds

to the phase of core game operation. This is typically represented as a ‘main loop’, which

involves rapidly repeating the following steps:

• Checking for user input

• Updating relevant data structures

• Updating aspects of game display

The main-loop is a macro-level construct that coordinates the overall running of the

game. Each of its steps is likely to involve numerous sub-steps. Programs are structured

as hierarchical systems of algorithmic process. There are typically loops within loops

within loops.

At the end of the game the program passes into a shut down phase, exiting the main loop,

disposing of data structures and returning the display context to the background operating

system.

At one level programs have a linear aspect. They begin, do something and end. Yet at

another level, in their looping, modular and interactive aspect they can be regarded as

non-linear. From this perspective, beginning, running and exiting represent less a linear

trajectory than a set of discrete states. A program can be conceived as a system of

26

interacting components rather than as a fixed sequential thing. This is the perspective

that contemporary object-oriented programming adopts.

Object-Oriented Programming

My first programming efforts in the early 1980s were with the Basic language for the

Commodore 64. Basic employs a very sequential, imperative style. All the code for a

program is written in one unbroken text file. Every line is numbered and the code

proceeds from the first line through to the last unless some control structure intervenes to

point the processor elsewhere. For all sorts of good reasons, this process of jumping

around and cycling here and there is often necessary.

Fig. 4: ‘Spaghetti’ code

This mode of organization clearly echoes the structure of a basic Turing machine – it

jumps discretely back and forth on a strip of tape. While this is fine for shorter programs

it quickly becomes a nightmare for longer ones. The continuous strip of tape is simply

not a good metaphor for complex non-linear processes.

The problem of so-called ‘spaghetti’ code was addressed by the next generation of code

that established a non-linear and analytical organizational model. The monolithic

continuous slab of code disappears, to be replaced by a more lightweight main loop that

communicates with data and algorithms as necessary. This structure is often called

27

‘structured’ or ‘procedural’ programming because the emphasis is upon creating generic

algorithms that link to specific data structures.

Fig. 5: Structured programming

Like linear imperative programming, procedural programming tends to work best with

small programs. Large programs can lose structure and coherence, establishing a huge

global pool of data and a large, undifferentiated mass of functional algorithms. The

newer paradigm of object-oriented programming (see, for example, Horstmann and

Cornell, 2005) arguably provides a more elegant and sophisticated means of developing

clear, easily maintained and re-useable code. Object-oriented programming works to

model an overall system of functional components rather than simply the passage of data

through algorithms. It describes classes of entity that have both attributes and capacities.

In programming a racing car game, for instance, there is likely to be the need for a class

that represents the relevant characteristics of a racing car. It may have attributes such as

make, colour and maximum speed, as well as capacities such as starting, turning and

braking. The essential characteristics of this notional car then combine dimensions of

both data (attributes) and algorithms (capacities). Instead of separating these dimensions,

object-oriented programming combines them into a single logical entity. The

programmer writes blueprints for potential objects. The focus shifts from describing data

and abstracted generic functionality towards envisaging systems of objects that

communicate. It is not that the concern with generic algorithms or data structures

disappears. It is that they are encompassed within another level of abstraction.

28

Four principles guide the conception of object-oriented programming:

1. Abstraction

2. Encapsulation

3. Inheritance

4. Polymorphism

In the case of object-oriented programming the principle of abstraction involves defining

the essential characteristics of any specific problem in terms of logically distinct and

communicating classes of modular functionality. The curious thing about this is how a

concern with system can be linked to a mechanistic notion of discrete objects. Just as

emerging modes of virtual interaction suspend our allegiance to the solidity of the real,

and contemporary science and philosophy question the possibility of entirely discrete

things (stressing instead relational identity), we suddenly discover, precisely within the

texture of the virtual, a new realm of discernible objects. Object-oriented programmers

work to define the essential characteristics of a ‘thing’ precisely as ‘thing-hood’ itself

becomes problematic.

The principle of encapsulation is related to that of abstraction. To abstract is to represent

in other terms. This involves not only a motion of manifestation but also a motion of

hiding. Whatever it is that is abstracted disappears from view. The complexity of

modern computer systems depends upon the construction of modular ‘black-boxes’ that

can be pieced together as necessary into functional systems. We are not encouraged to

look inside these boxes and are certainly not meant to tinker with their internal states and

procedures. Encapsulation refers then to this deliberate work of hiding in which we

engage with objects as abstracted functional entities and are not permitted to delve into

the internal details of how they function. The same principle enables us to drive a car

without requiring any thorough mechanical understanding of how it works. We engage

with the mediating abstraction of the steering wheel rather than the messy complexity of

contemporary steering technologies.

29

Object-oriented programming languages such as Java enforce strict protocols of

encapsulation. The internal state of an object should only be accessible through

designated ‘public’ procedures. The latter constitute an interface to the object’s internal

‘private’ attributes (fields) and algorithms (methods). Apart from protecting data from

inappropriate modification, encapsulation makes code modular. Classes can be written,

tested and maintained in isolation from the functioning of the program as a whole.

The principle of inheritance refers to the capacity for classes to inherit the characteristics

of other classes. The programmer defines general classes that provide the basis for more

specialized classes. An abstractly defined ‘moving object’ class may then be extended to

create a ‘car’ or a ‘plane’ or a ‘spaceship’ class. The various inherited classes take on the

attributes and algorithms of the base class and can add their own additional features as

necessary. An interesting consequence of inheritance is that it enables a class to

encapsulate dimensions of its own identity and functionality – to become abstracted, as it

were, from aspects of itself.

If inheritance enables logical-hierarchical and encapsulated differentiation, the final

principle of polymorphism provides a means of managing multiplicity. Although cars,

planes and objects are all different things (with their own independent class descriptions)

they can still all be accessed as ‘moving objects’. They share a common interface yet can

still process differentiated input and produce appropriately differentiated results.

Polymorphism serves to mediate complexity through a vital dimension of structured

commonality.

It is interesting to note the variety of metaphors that inform the conception of object-

oriented programming, drawing, for example, on engineering (the notion of an object as

‘black-box’ machine), politics (encapsulation as means of securing the boundaries

between public and private) and biology (the notion of inheritance and of morphology).

The concept of class interestingly relates across all three of these conceptual domains

(blueprint, social class, biological class), although its main derivation is from

mathematics (set theory). This multiple set of references seems pertinent to the expanded

space of possibility that object-oriented programming engenders. Despite its atomic view

30

of real world things and processes, it enables a modular, mutable, decentralized approach

to issues of structure that has all kinds of creative implications. The emphasis it places on

the interaction of objects – on the elucidation of a system – suggests a very different field

than that described by linear forms of media.

With this overall description of the formal features of high-level programming in place,

we can now move on to consider programming as a mode of creative practice.

Code Practice

Programming is a form of writing. The programmer writes text files. However these

files are not primarily intended for human reading, but for machine-reading. Unlike

natural language that can cope with huge elements of ambiguity (meaning emerging

through a complex process of human negotiation and inference) the artificial languages of

computer programming demand an absolute semantic and syntactical precision. A single

misplaced semi-colon or wrongly positioned space is enough to make the machine reader

reject the code or possibly even to collapse (crash) on attempting to make sense of it.

This horizon of machine reading, of execution – the necessity that code run, that it pass

from text-based instructions into logically legible sequences of byte-code – vitally affects

the nature of code practice. The programmer moves tenuously between two planes of

visibility – the plane of written code and the plane of output (the sensible interface) –

while the middle space, the space of code running occurs invisibly, as an elsewhere. As

one monitors and observes the consequences of the specific play of calculations, there is

both an intimate sense of engagement with code processes and an equally compelling

sense of distance – of separation, of mediation.

How is this curious realm of writing – involving the passage between the human and the

mechanical, the material and the abstract and the hidden and the manifest – to be

conceived? As Cramer (2005) suggests in relation to the multiple, often contradictory,

conceptions of the culture of software, there is a need less to elaborate a single coherent

view than to acknowledge a diversity of perspectives. Programming has been variously

conceived as an abstraction of the factory assembly line and as a speculative activity that

bears a relation to painting and literature, as a dull motion of technical implementation

31

and as an experimental, questioning practice, as a form of solipsism and as a medium of

social collaboration. My aim in the remainder of this chapter is to explore some of these

competing, often opposed, perspectives. I should note that while Cramer adopts a very

inclusive notion of software that includes not only executable code but also non-

executable code, reflections on code and a more general context of speculative

imagination, my interest is more specifically in modes of programming practice – with

programming conceived as a form of writing that necessarily charts a relation to machine

execution, that summons, and disappears within, a space of running.

Freedom and Restriction

Programming is both a highly circumscribed activity and one that enables substantial

freedom. In terms of its restrictive aspect, programming is bound by precise syntactical

and semantic rules, employs formulaic modes of expression and tends at the macro-level

to follow recognizable ‘design patterns’ (Gamma et al, 1995). At the same time,

however, there is a tremendous freedom to elaborate systems as one likes. Programming

works at a meta-level. It allows the programmer to articulate the conditions of a medium.

It permits a fundamental work of design and articulation that can establish, for instance,

the nature of time, space and interaction. Programming enables a free, playful

engagement with the generative, speculative character of abstraction.

Mediation in Reverse

Immanuel Kant’s 1790 Critique of Judgment (Kant, 1980) provides a classic description

of the nature and role of aesthetics. According to Kant, aesthetics works to mediate a

relation between the abstract, a priori space of pure reason and the realm of sensible

experience (Kant, 1980: 493). Aesthetics represents a moment of rationality that is pre-

conceptual, that is constituted both as an intuitive recognition of a dimension of abstract

order within the phenomenal (the notion of the beautiful) and as a sense of awe and

wonder before vast, chaotic sensible prospects that serve to echo and metaphorically

manifest the protean, infinite horizons of the a priori (the notion of the sublime).

Experimental artistic programming practice, however, works differently – almost in

reverse. It represents an aesthetic engagement with abstraction and with the trans-

sensible space of computation. The latter appears as the mechanization and

32

exteriorization of pure reason; regarded no longer as an immediately accessible human

resource but as a space of otherness that must be summoned through code. Programming

represents the effort then to humanly, sensibly, engage with the terrain of the insensible.

Code and the labour of coding appear as a flesh-like interface to an intractable space of

abstraction.

The French philosopher Henri Bergson (1911) is famously critical of film for the manner

in which it represents time. Film, he argues, decomposes time. It breaks it up into

discrete instants and then attempts to reassemble continuous time from sequences of

successive still images (Bergson, 1911: 306). This is to neglect the fundamental

character of time – its intrinsic continuity, its duration. If film is problematic, then how

much more so are binary, digital processes? The time of computation is sublimely

opaque. It is not composed of perceptible instants, but of machine cycles that exceed

human resolution. The speed of a standard repeat loop, even if it involves thousands of

iterations, typically occurs so quickly that it cannot be registered as a temporal process; it

appears instantaneous. Similar points can be made about computational space. We know

that computer memory is ultimately physical but the combination of immense magnitude

and microscopic scale makes it humanly inaccessible. But by actually practically

engaging with this space, by allocating arrays of data, rapidly searching though them and

destroying them, the practice of programming provides some kind of purchase on this

terrain of abstraction. It provides a close, flickering sense of the inhuman otherness of

computational processes.

Magic and Manufacturing

Cramer relates programming to the casting of spells – the magical potential to affect the

material world through the agency of arcane procedural utterances (Cramer, 2005: 14).

The Australian new media theorist Chris Chesher (2001) examines how the metaphor of

‘invocation’ informs notions of programming. He demonstrates that the relation of the

programmer to the operating system and the abstract space of computer memory is

conceived as a magical calling forth of spirits. Programming is described as a form of

conjuring and as a means of accessing secret powers. As an example, a textbook by the

artist Peter Small on the Lingo scripting language is titled Lingo Sorcery: The Magic of

33

Lists, Objects and Intelligent Agents (1996). Small introduces the field of object-oriented

programming in the following hyperbolic terms:

This book goes beyond syntax, into a conceptual world, where Lingo is used to

construct strange interacting forms and structures in the mind as well as within the

memory of the computer. It is a world which has to be discovered, not learned.

(Small, 1996: 1)

Object-oriented programming appears as a mystical realm of understanding and the

reader is positioned as an initiate into a dark art.

While the metaphor of magic is very evident within programming and suggests the

fascination of a medium that links language to visible and invisible aspects of process, it

is, for me, always qualified by an equally clear sense of programming as a logical, skilful

practice of making. Programming is as much a work of manufacturing as of casting

spells. I am very interested in this notion of programming as a work of rational, analytic

construction, centrally concerned with issues of efficiency and running. The issue of how

such a conception can correspond to a notion of critical art is one that I return to in later

chapters. My aim there, very briefly, will be to examine the complex relation between

critical questioning and building in software art, suggesting the potential for questioning

to take the form of making and making the form of questioning within strands of

experimental code practice.

General and Particular

In their classic 1947 critique of 20th century mass culture, ‘The Culture Industry:

Enlightenment as Mass Deception’, Theodore Adorno and Max Horkheimer argue that

culture has become thoroughly affected by capitalism. All culture now adopts the form

of products to be consumed and obeys rules of standardization that take archetypal shape

in the factory assembly line. Any appearance of difference is entirely superficial and

illusory. There is a gesture of ‘pseudo-individuation’ that works only to disguise the

genuine logic of uniform cultural identity: ‘[w]hat is individual is the generality’s power

to stage the accidental detail so that it is accepted as such’ (Adorno & Horkheimer, 1982:

34

374). How does this critique affect our understanding of programming practice,

specifically in terms of how the relation between the general and the particular is

conceived within object-oriented programming? Object-oriented programming makes a

fundamental distinction between classes and objects. A class is a general abstraction (a

blue print) while an object is a particular thing (an instance of a class in memory). But

how genuine is this dimension of particularity? Although a spaceship class may breed all

manner of particular spaceship objects which vary in terms of specific designated

parameters (length, colour speed, etc.), can this constitute anything more than a merely

cosmetic level of difference? Does this abstractly determined particularity represent the

very essence of the domination of the particular by the general?

These are precisely the questions that confront creative artificial life projects as they

struggle to fashion emergent effects within the finitude of digital agar. In my view it is

less an issue of insisting upon the generation of utterly unpredictable phenomena than of

recognizing an overall orientation towards differentiation rather than uniformity. Object-

oriented programming works at multiple layers to structure individuation in terms of the

interaction of abstractly defined constitutive elements and rules. The potential for

differentiated complexity is facilitated by object-oriented processes. The field of

generative artificial life envisages classes as evolutionary templates – DNA style

genotypes for ‘breeding’ particularized phenotypes (Whitelaw, 2004). Within the field of

Genetic Algorithms even abstract classes themselves can be evolved. Artificial life

conceives programming not in terms of the monotony of the assembly line but in terms of

the rich variety of organic life. Overall, then, differentiation is less an external effect

within object-oriented programming than an integral structural feature. This is clearly

linked to the conceptual shift that object-oriented programming represents from a linear

and centralized notion of process – to a systemic and distributed one.

Solipsism and Sociality

As a venerable convention, the first exercise in a programming textbook involves writing

‘Hello World!’ to the console output. This exercise has always raised questions for me.

Who is speaking? Who is this greeting directed towards? Is it the thinking machine

adopting a human guise and making a comic overture to a space of exteriority – the world

35

– that can never be its proper focus of concern? Or is it a completely uncertain gesture of

communication from the programmer to a world that can only be accessed through an

endless chain of mediation? Is there an irony in the tenuousness of this greeting and its

obvious solipsism, or could it also express a utopian hope for social interaction?

Programming represents at one level a withdrawal from the world into a closed cycle of

cybernetic exchange in which the risk of human communication is replaced by the

consoling rhythm of instructions and feedback, and in which human control and agency

can only ever be contradictorily affirmed (as a work of both constructing a technological

apparatus and being enframed within it). At another level, however, it represents a new

avenue of social speech and engagement. It is both of these possibilities at once. This is

very evident within the culture of hacking, which involves both a relentless concern with

the arcane, technical details of computation and a determined effort to establish and

participate in collaborative social networks.

The culture of hacking grew up in the late 1950s as large mainframe computers became

accessible to graduate students in universities and the like. It received further impetus

with the growth of the UNIX operating system, personal and networked computing, and

the web. Richard Stallman is the archetypal hacker (Stallman, n.d.; Levy, 1984). A

crucial contributor to the GNU/Linux project and an old-school 1960s radical, Stallman is

the founder of the Free Software Foundation (Free Software Foundation, n.d.). He

regards the practice of coding not as a work of commercial manufacturing but as a

fundamentally political act. It is both an expression of freedom and a practical means

towards it. Here a vital conceptual link is evident to the linguistic status of code. Code is

a form of speech. The Free Software Foundation argues:

Free software is a matter of liberty, not price. To understand the concept, you

should think of “free” as in “free speech”, not as in “free beer”. (Free Software

Foundation, n.d.)

However silent, however much it is spoken into the ears of a machine – code and the

practice of programming somehow makes a return to the promise of the social. It is a

paradoxical manifestation of the social.

36

Competing Methodologies

Traditional approaches to software engineering – so called ‘waterfall’ methods –

represent the practice of software development as a predictable, linear process. Software

development is conceived as a large-scale, long-term endeavour that is structured in

terms of a fundamental division between processes of design and implementation. An

initial stage involves producing user case scenarios and analyses to define the specific

software requirements. This is followed by an exhaustive software design process in

which every facet of the proposed software system is described. In relation to the

technical system, thorough visual models of the object-oriented design are developed,

with all attributes and capacities of individual classes indicated, as well as the complex

system of inter-class relations. Only after everything has been determined in advance and

meticulously documented does any actual programming begin. As a result the practice of

programming is reduced to a work of technical implementation. The model of

predictable industrial engineering banishes any sense of experimental design practice

from software programming. It also relegates the texture of code, as writing, secondary

and insignificant. Software development is regarded less as a textual process than as a

conceptual one; the fully designed concept precedes the text and dominates it.

More recently, in 1996, an alternative paradigm has emerged, termed ‘agile’ software

development (Agile Alliance, n.d.). This methodology rejects the model of large-scale

modernist industrial engineering, preferring an approach in which software development

proceeds in much shorter, socially collaborative and textually implicated development

cycles. If software engineering adopts a linear and strictly hierarchical approach, agile

practices follow a looping, modular pattern that mirrors the conception of object-oriented

programming. Crucially, design becomes a part of programming rather than appearing as

an altogether anterior space of determination. A problem – a possibility – is conceived,

then it is swiftly clarified and bits of pieces of the problem are tackled. Software

prototypes are produced which suggest further design issues and the need for further

prototypes. Gradually, in an organic and iterative fashion, an overall piece of working

software is developed.

37

Agile methodologies draw inspiration from the model of free and open-source software

development. The GNU/Linux operating system was produced entirely as a community-

based collaborative project. The complex cultural and technical assemblage of

GNU/Linux emerged without any reference to a design blueprint. Indeed the

phenomenon is simply too complex to be susceptible to exhaustive preliminary

description. One of the major problems with the waterfall software engineering approach

is that it attempts to manage complexity by stepping outside of it – by denying its real

force. In the process the method tends to endlessly stumble across things that it had not

adequately anticipated. Agile development methodologies suggest that only by moving

design within software, within the complexity of programmatic textual relations, is a

more coherent and pragmatic process of software development possible.

Despite their differences, both waterfall and agile software development methodologies

represent programming as a form of engineering. They maintain an allegiance to logical,

procedurally rigorous processes of construction. Hacking, however, is less immediately

responsible and task-oriented. It begins with the wayward practice of tinkering, of

messing about with bits of code. It is playful at the outset rather than directed. In his

introduction to programming the Arduino microcontroller, Massimo Banzi describes an

alternative embedded programming philosophy that is clearly based on the culture of

hacking:

The classic engineering approach relies on a strict process for getting from A to B

while the Arduino way is based on maybe getting lost in the way and finding C

instead; playing with the medium in an open-ended way, finding the unexpected.

(Banzi, 2006: 7)

This methodology clearly also bears a relation to aspects of traditional aesthetic practice.

In his article ‘Hackers and Painters’, the programmer Paul Graham rejects the classical

engineering paradigm and searches for analogues from the creative arts to describe

programming practice:

38

[T]here was a name for what I was doing: sketching. As far as I can tell, the way

they taught me to program in college was all wrong. You should figure out

programs as you're writing them, just as writers and painters and architects do.

(Graham, 2003)

This paradigm has considerable currency within contemporary software art (see Malina

(1979), Reichardt (1971) and Druckrey (1999) for earlier precedents within 1960s and

1970s art and technology experimental practice). Ben Fry’s and Casey Reas’s

experimental digital arts programming environment, Processing (Fry and Reas, 2001,

continuing), deliberately encourages an exploratory approach. It is concerned not with

the creation of finished, fully elaborated pieces of useful software but with playing with

dimensions of structure and process. Programming projects are called ‘sketches’ and are

conceived as mixed technical and conceptual-aesthetic entities. In my view, however,

there is a need for some qualification. It is not a matter of reaffirming the conventional

opposition between the instrumental and the aesthetic. Rather, alternative programming

practice has the potential to suggest something more radical: a rethinking of the

instrumental from within its own formal devices. Although it resists the culture of

pragmatic software, software art nonetheless intervenes in its language and speaks its

language, even when it casts its work in negative terms, even when it envisages its work

solely as one of corruption. This is evident in a manifesto of the New York based group,

8-bit Collective (or Beige programming ensemble):

Our primary foundation of Post Data is then this: the conscious

corruption of data, the releasing of bits from their imprisonment within

the restrictive, limiting boundaries of corporate software applications,

and the exploitation of the extreme complexity of computer systems paired

with the extreme intentionality of artist(s) who seek to engage the

computing process at a fundamental level. It is at this point that the

machine ‘speaks’ to us, revealing a more honest representation of the

technological extremity. (Beige, 2001)

39

8-bit collective set out both to corrupt data and to engage ‘the computing process at a

fundamental level.’ How is the latter possible without speaking the language of the

computation, without adhering to the forms of abstraction and functioning that provide

the basis for everything they set out to resist? In my view, experimental software art

opens up a context in which the languages of critique and instrumental-making enter into

a new relation that affects the nature of both. This is an issue that I pursue more

thoroughly in Chapter 6.

Conclusion

This chapter has considered the formal characteristics of high-level programming and

discussed the complex and often contradictory ways in which programming is conceived

as a mode of practice. The aim has been to provide a basis for a more specific

consideration of the genre of software art in the following chapter. Software art is

centrally concerned with reflecting upon its status as code – with envisaging a critical

meditation on code that is conducted through the mechanisms of code. What does this

mean and how is it enabled? What are the specific issues and tensions that arise in

attempting to position software as critical and reflective? How does this relate to

programming as a practice of speculative manufacturing?

40

Chapter 4: Software Art

Introduction

While aesthetic experimentation with programming has been evident since the 1960s, it

has tended to slip into the background – to be regarded as simply one, among many, ways

of producing new media. The emphasis, as we have seen, has been on the sensible work

rather than the underlying code that structures the possibility of any specific digital

interface (Cramer and Gabriel, 2001). The question of the aesthetic status of this mixed

space of writing and abstraction has never been quite so directly posed until the advent of

contemporary software art. This chapter examines the genre of software art, considering

how it has been conceived, the historical forces that have shaped it and the specific

dilemmas that confront it. I begin by sketching a general context of aesthetic engagement

with the field of programming.

Exclusion

The early history of computer art is typically described in terms of a rapid rise and an

equally rapid fall. The British theorist Charlie Gere (2002:102-109) describes how the

late 1960s avant-garde fascination with the aesthetic possibilities of the computer lasted

only till the beginning of the 1970s when Conceptual Art grew suspicious, rejecting it as

politically and aesthetically naïve. After the flurry of excitement and disappointment that

surrounded Billy Kluver’s ‘Experiments in Art and Technology’ (EAT), the 1968 London

‘Cybernetic Serendipity’ exhibition and the 1970 New York ‘Software’ exhibition, avant-

garde art and technological experimentation went their separate ways. Conceptual Art

emerged as dominant while computer art was marginalized to the aesthetic ghetto of

separate art-science-technology festivals (Ars Electronica, Inter-Society for the

Electronic Arts (ISEA) and Association for Computer Machinery’s Special Interest

Group on Graphics and Interactive Techniques (ACM SIGGRAPH)). Gere (2002: 104)

argues that a primary reason for this exclusion was the growing sense that technology

could no longer be regarded as an innocent mechanism of social progress. Instead, at the

radical tail end of the 1960s, it came to be associated with the regime of exploitative

41

instrumental rationality. Aspiring to create art with a computer seemed at best wishful

thinking and at worst an alibi for power.

Of course, this is to render the 1960s Art and Technology movement thoroughly

unambiguous, when its relation to technology was actually more complex. For a start,

the aesthetic questions that the Art and Technology movement raised were clearly

continuous with dominant strands of avant-garde practice. Their reflections on the

mechanical, the automatic, and the serial traced very legible links to central themes

within Dada, Constructivism, 12-tone music, the OuLiPo, etc. They embraced the

technological not simply as another (mistaken) sign of the aesthetic, but as a means, in

classic avant-garde fashion, to undermine the notional autonomy of art. The alliance

between art and engineering served both to question art’s complacent distance from the

world of technologically manufactured things and engineering’s lack of concern with

issues of human value and imagination. In this sense, technological art maintained a

critical dimension. It was never simply affirmative. Edward Shanken argues that the

reflective and parodic character of the Art and Technology movement’s engagement with

technology is often overlooked. Actually their work is ‘infused with irony, their

technological or pseudo-technological components must be interpreted as parodies of

scientific structures of knowledge and their uncritical application in art and society.’

(Shanken, 2004: 246).

Programming, as a specific form of technological engagement, was awkwardly

positioned in terms of the split between technological and conceptual tendencies. Unlike

heavy bits of machinery, it could hardly be condemned as basely material. Indeed the

curator of the 1970 ‘Software’ exhibition, Jack Burnham, explicitly positioned software

as a metaphor for the properly conceptual character of art (Shanken, 1998: 1). The latter

was modelled on the immaterial and system-focused realm of computer software. The

notion of software provided a bridge between Cybernetics (with its concern with the

techno-ecology of systems), Structuralism (with its concern with language and culture as

an abstract combinatory system) and Conceptual Art as a formal and critical interrogation

of dimensions of meaning and process. Yet despite its status as a metaphor for art and as

a bridge between a variety of emerging modes of reflecting on systems, software

42

programming – in its clear orientation towards the dimension of machine process – could

hardly avoid the consequences of the more general technological exclusion. The ‘good’

abstract conceptual stuff of programming was sublated into the algorithmic play of

Conceptual Art (the instructional drawings, for example, of Sol LeWitt), while the ‘bad’

material residue of executable code was abandoned.

The consequences of this split were felt for more than two decades. The experience of

the British artist, Paul Brown, is representative. As a young artist he was inspired by the

provocative blurring of boundaries between the fields of art and science in the London

Cybernetic Serendipity exhibition (Brown, 2003: 1). He became interested in computers,

particularly as a means of exploring issues of generative structure and process related to

the emerging field of artificial life. For this reason, he argues, his work attracted little

mainstream interest:

Thanks to my longstanding interest in computational systems as a medium for the

visual arts I have been relegated to the fringes of the arts mainstream for most of

my career. (Brown, 2000: 2)

He was not altogether unhappy about this exclusion. Alienation had its perks (alternative

festival circuits and funding sources). When he detected a new interest in digital art from

the ‘global art mafia’ (Brown, 2000: 2) in the early 1990s, he was relieved to find that it

was thoroughly superficial ‘as a unique new paradigm for the arts quickly fell prey to the

[…] “no skills please – we’re postmodernists” kind of rhetoric that the international

contemporary arts scene use to defend their position whenever it is threatened’ (Brown,

2000: 2). Very apparent is the continuing sense of slight associated with Conceptual

Art’s rejection of the technical aspect of process – its attempt to reflect critically on the

nature of systems without literally partaking of their material technical forms. While on

one level Paul Brown’s stance is practice-focused and vehemently anti-theoretical, at

another level it represents a meta-critique of the notion of critique itself – of the

assumption that critique can be purely articulated apart from dimensions of technical

process.

43

In his short essay ‘The Death of Computer Art’, Manovich (1996) reflects upon the

incompatibility between the art world and alternative networks of creative computing.

The art world, which he terms ‘Duchamp-land’, is characterized by a concern with

conceptual ‘content’ and critique, while the sphere of creative computing (‘Turing-land’)

focuses on technological novelty and upon exploring the aesthetic possibilities of the

computing medium. According to Manovich, the two tendencies are inevitably opposed

and any attempt to integrate them is bound to fail:

What we should not expect from Turing-land is art which will be accepted in

Duchamp-land. Duchamp-land wants art, not research into new aesthetic

possibilities of new media. (Manovich, 1996)

Some five years later, Cramer (2001) reassesses Manovich’s claims and argues that the

distinction is overly simplified. He rejects the association of ‘techno-positivist’ computer

art with the founder of modern computer science, Turing, arguing that the latter’s work,

the discipline of computer science and wider hacker culture can be deeply reflective and

ironic. While acknowledging the point that dominant strands in computer art, associated

with exhibition and research contexts such as Ars Electronica and Zentrum fur Kunst und

Medientechnologie (ZKM), reveal utopian tendencies, he argues that there are ‘subtle

transitions between both options’ (Cramer, 2001). How did this more nuanced

perspective develop? What had changed during those five years to prepare the way for

software art?

New Relations

Very generally, the period between 1996 and 2001 was one of massive growth and

consolidation of digital culture within Western societies. The proportion of home

ownership of computers in the US, for instance, increased from about thirty to fifty

percent (Leigh and Atkinson, 2001: 3) – a faster rise than had occurred in the whole past

decade. The web also experienced exponential growth, gaining a strongly commercial

focus and becoming much more technologically sophisticated. If early web sites were

mainly static html pages, now they became dynamic, database driven sites, linking

complex back-end technologies to increasingly self-consciously designed and interactive

44

front-ends. The computer game industry also gained vital impetus. ID Software’s

seminal first-person shooter, Quake, was released in 1996, pushing the real-time display

of 3D computer graphics to an unprecedented level. Furthermore, a whole suite of

‘creative software’ and hardware appeared that enabled the first wave of accessible

digital photography, video, audio and multimedia.

Within this context, it was no longer possible, as an artist, to ignore digital culture and

technology. It demanded attention and engagement. The web became a key area of

concern. If a major prior focus of cultural critique had involved exploring the dimension

of language within the apparently intuitive media of photography and film, the internet

represented a far more literally code-based medium. Engaging with code was no longer a

matter of exposing hidden ideological mechanisms, but one of deconstructing the actual,

material – abstractly inclined and pragmatically procedural – texture of power relations.

Net art drew upon the radical traditions of Dada, Situationism and Fluxus to provide a

deliberately low-tech critique of the politics and aesthetics of the mainstream web

(Weibel and Druckrey, 2001; Paul, 2003; Tribe and Reena, 2006). Olia Lialina’s My

Boyfriend Came Back from the War (1996) provides a classic example, rethinking the

web page as a strange conjunction of hyper-text and film montage. The field of net art

played a crucial role in highlighting the space of code and established a vital context for

artists to develop relevant technical skills. In writing their own html pages, artists gained

insight into the technical nature of the web and a pathway to more dedicated forms of

programming. Another pathway was provided by proprietary multimedia software

packages, such as Macromedia Director and Flash, that included powerful and accessible

scripting languages.

Net art grew increasingly technically ambitious during this period. No longer content to

adhere to the conventional notion of the web as a network of tidy discrete pages, artists

began to process html code themselves, creating alternative browsers that represented the

web as dynamic, code-centred space. The London collective IOD’s Web Stalker (1997)

software is a famous alternative browser. The software provides no coherent assembled

pages, only visible html code and maps of data and their networked relationships. It

portrays the web very explicitly as a coded abstraction. Another example is Mark

45

Napier’s Shredder (1998), which creates a jumbled collage of page elements. The work

emphasizes that code and interface are not the same thing – code opens up a space of

playful re-combinatory possibility that ordinary browsers repress. In their emphasis on

deconstructing code processes through the mechanisms of a code work – as well as in

their combination of conceptual-political themes and technical engagement – these works

appear as seminal, anticipatory pieces of software art.

Alongside artists intervening in the technology, technologists were doing things that

strangely resembled critical art; specifically in terms of modeling and realizing the kinds

of collaborative social relations that radical art was intended to foster. In 1999, the Ars

Electronica festival awarded their Grand Prize to the Linux operating system. Many

artists were appalled, questioning how a purely instrumental technological project could

possibly warrant an art award (especially when net artists were still struggling to obtain

mainstream recognition) (nettime mailing list, 1999). Others, however, recognized it as

useful provocation; a gesture from the aesthetic ghetto concerning the nature of genuine

radicalism. This award also suggested the increasing confidence and cultural relevance

of alternative contexts such as Ars Electronica which were no longer so clearly marginal

and out of step with currents of cultural critique. According to Jacob Lillemose (2004:

141) a third wave of Conceptual Art developed in the early 1990s that was characterized

by a heightened sense of social and political activism. It was concerned to intervene

within structures of power rather than to enigmatically reflect upon systems of meaning

within the autonomous and inevitably compromised space of avant-garde art. These

currents of conceptualism recognized GNU/Linux as a highly relevant paradigm for

alternative cultural-technological practice.

If Ars Electronica was established in the late 1970s to question the neat divisions

between art and science, now this work was being undertaken at a far more general

cultural level. The web provided a context – and a multitude of particular contexts – in

which artists and technologists could meet beyond the straightjacket of conventional

disciplines. Another context was the rapidly expanding field of computer gaming, which

led programmers to take an increasing interest in issues of graphic visualization and

interaction, and artists to take a more dedicated interest in the potential for non-linear,

46

generative abstraction that programming enables. Multimedia production served as

another important interdisciplinary context. Neither art nor science, it appeared as a

messy, non-rigorous, exploratory field in which artists could pretend to be technologists

and technologists could pretend to be artists. All manner of significant exchange

occurred on the basis of the inevitable and uncertain relation between the programming

‘back-end’ and the visual ‘front-end’. Specifically, the technologically-oriented web

forums provided an important model for social collaborative communication and

practice. Unlike many of the agonistically conceived cultural theoretical forums, the

technological forums were generally friendly places structured to provide information,

answer questions and facilitate community.

One other development is worth mentioning. The first decades of personal computing

had focused on making the computer as humanly accessible as possible. They had been

dominated by the holy grail of the natural, intuitive interface. In the late 1990s, however,

there was a shift in orientation back to the paradigm of text. This was associated

particularly with the rise of the GNU/Linux operating system, which placed the emphasis

on acknowledging computational complexity – allowing end users to engage with their

systems in sophisticated ways via the command line interface. This made computers

accessible in a different sense, not so much as simulated worlds and transparent

(encapsulated) tools but as spaces of meta-level organization that demanded human

intervention. A similar philosophical stance led many artists to shift away from the use

of commercial ‘creative software’ towards an engagement with the medium of

programming itself as a more open and genuinely creative space. Within the overall

context of commercial computational complexity, this represented a deliberate

anachronistic turn. Artist-based programming integrated development environments such

as John Maeda’s Design By Numbers and Ben Fry’s and Casey Reas’s Processing were

deliberately structured as code-based interfaces. Running against the trend to make

everything accessibly visible, they made the ordinarily invisible space of code manifest

and accessible.

Much had changed then in the five years that separate Manovich’s and Cramer’s views

on the relation between computer art and mainstream art. Mainstream art had re-engaged

47

with technology and technological art had become more mainstream – broaching

questions that critical art itself wished to pose. The genre of software art appears within

this context – at least initially – as a moment of reconciliation of conceptual and

technological traditions. At the same time, however, it also provides a context for the

reaffirmation of traditional distinctions.

Software Art

Contemporary software art achieved its first notable recognition in 2001 when a prize for

‘artistic software’ was awarded at the Berlin Transmediale media arts festival.

Subsequent key events included the 2002 Read_Me 1.2 Software Art/Software Art

Games festival (Moscow) and in the same year the Whitney Museum’s CODEeDOC

exhibition (New York). It is worth examining the critical statements and work associated

with these events as a means of indicating the overall characteristics of software art, as

well as specific tensions that constitute the field.

As I suggested in the previous chapter, the jury for the Transmediale festival define

software art precisely in terms of its difference from new media. Software art, the jurors

argue, shifts the focus from the visible surface of digital art to the constitutive space of

code. They regard programming code as fundamentally different from traditional media

in that the former is not a passive intermediary; code does something, it is executable, it

performs actions:

Perhaps the most fascinating aspect of computing is that code – whether displayed

as text or as binary numbers – can be machine executable, that an innocuous piece

of writing may upset, reprogram, crash the system. (Transmediale.01 Media Arts

festival jury, 2001)

Programming represents a new condition of writing, in which written abstraction obtains

powers of literal agency. On this basis, the jury rejects the conventional notion of

software as a tool. It is less the instrumental character of a tool, in this instance, that is at

issue than its passivity. They argue that ‘digital code is virulent’ (Transmediale.01 Media

Arts festival jury, 2001) and that it can only appear as a tool by disguising its actual

48

operations. Software art then has the potential – and crucial aesthetic duty – to expose

the machinations of code, to make code visible. At the same time they suggest that ‘it is

itself a ground for creative practice’ (Transmediale.01 Media Arts festival jury, 2001).

This is an interesting addition, because it suggests, already, an area of tension and a

lingering basis of distinction; at one level software art is represented as a form of critical

revelation – as a meta-level reflection on code processes – while at another level it

constitutes a basis for creative experimentation. Beyond a motion of critique of dominant

discursive and operational regimes of software, it seems that software art can also explore

the formal conventions of the medium. Both tendencies are founded upon the making

visible of code that is constitutive of software art. Software art as a form of critique

necessarily takes shape as a coming to critical consciousness of code, while software art

as aesthetic experimentation depends upon the medium of code distinctly appearing. The

jury makes a deliberate effort to be inclusive, to encompass formal, critical-contextual

and other tendencies:

Software art could be algorithms as an end to themselves, it could subvert

perceived paradigms of computer software or create new ones, it could do

something interesting or disruptive with your computer, it could be creative

writing, it could be science. (Transmediale.01 Media Arts festival jury, 2001)

The 2001 software art prize was shared between three works. Two were visually

abstract, generative software projects (Antoine Schmitt’s Vexation 1 and Golan Levin’s

Audiovisual Environment Suite) while the third project, Adrien Ward’s Signwave Auto-

Illustrator, included aspects of both software criticism and formalist experimentation. A

semi parodic re-make of the commercial vector drawing package, Adobe Illustrator, the

interface represents an ironic reflection on the idiom of instrumental software, while the

actual drawing operations reveal a concern with procedural pattern-making and

generative artificial life.

In a subsequent article, two of the festival jurors, Cramer and Gabriel, describe the

historical context of the emerging genre in terms of its links to the tradition of Conceptual

Art and, more specifically, to strands of socially-critical, meta-reflective net art (Cramer

49

and Gabriel, 2001). They distinguish two tendencies within Conceptual Art, one that

focuses on issues of immaterial structure and system (associated with artists such as

Henry Flynt, Sol LeWitt, John Cage and La Monte Young) and another that is more

socially and critically focused (the later Joseph Kosuth, Hans Haacke and Vito Acconci).

The former appears as a mode of formalism, while the latter has a cultural, contextual and

activist orientation. Cramer and Gabriel lean towards the latter, suggesting that software

art ‘has become less likely to emerge as conceptualist clean-room constructs than reacting

to these stereotypes’ (Cramer & Gabriel, 2001: 3). The Read_Me 1.2 and CODeDOC

exhibitions represent two different responses to this heritage.

Leaning Toward Critique

The Read_Me 1.2 festival can be interpreted as a development of the critical-cultural

orientation within software art. However, the jury’s classic definition of software art

maintains the emphasis on an inclusive approach:

Since read_me 1.2 is one of the pioneering festivals of software art we felt it

necessary to open up the field rather than to prematurely narrow it down. We

consider software art to be art whose material is algorithmic instruction code

and/or which addresses cultural concepts of software. (Read_Me 1.2 jury

statement, 2002)

If strands of aesthetic experimentation and critical-cultural practice can coexist within

software art it is because both entail a close engagement with the labour of programming.

The crucial difference between the contemporary situation and the earlier moment in

which computer art and Conceptual Art diverged is that contemporary conceptualism,

whether formalist or critical, is determined to get its hands dirty – to engage with code

practically. For critical software art this entails an effort to intervene within the culture of

software rather than to remain at a safe distance. The call for entries to the Read_Me 1.2

festival articulates this engaged perspective:

In order to stay current, an artist must acquire new methods of working in social

spaces and react to the questions that concern society. An artist immersing

50

himself in the production and software development spheres – areas allegedly

intended to facilitate our lives through “progress” – has a chance to find his

audience and to actually influence culture. (Read_Me 1.2 festival organizers,

2002)

The critical-cultural orientation is made very explicit in the three styles of code entry that

the festival invites: code that leads standard software ‘astray’; deconstructive code; and

‘[w]ritten from scratch’ software that resists the model of software as a rational,

pragmatic tool’ (Read_Me 1.2 festival organizers, 2002).

The overall prize was split between three software projects: Mark Daggett’s Deskswap,

which allows users to load other people’s desktops from around the world as a means of

reflecting upon issues of globalization; Eldar Karhalev and Ivan Khimin’s ScreenSaver,

which is a set of simple (non-technical) instructions for altering the Microsoft operating

system screensaver; and Joshua Nimoy’s Textension, which playfully re-conceives word-

processing as the creation of concrete-poetry style visual patterns of text. The emphasis

is clearly on work that is critical rather than formalist, although Textension, like

Signwave Auto-Illustrator, manages to bridge both strands of practice – shaping critique

as a form of speculative aesthetic enquiry.

Leaning Toward Formalism

At least in terms of its overall curatorial conceit, the Whitney CODe_DOC exhibition

(2002) represented a more formalist approach. It provided its twelve participating artists

with a single conceptual exercise: ‘This code should move and connect three points in

space.’ In its minimal abstraction, this clearly recalls the procedural rhetoric of formalist

Conceptual Art. The Transmediale.01 jury had lamented the lack of visible source code

amongst the submitted works (Transmediale.01 Media Arts jury, 2001). CODe_DOC

responded to this concern by placing a primary emphasis on displaying source code.

Project links on the website (http://artport.whitney.org/comissions/codedoc/index.shtml)

contained a thumbnail image of the work, the artist’s name and their specific

programming language. Clicking on a link led directly to the artist’s source code – only

there, perhaps, in the code comments could you actually find the title of the work, and

51

http://artport.whitney.org/comissions/codedoc/index.shtml

only there, by scrolling to the end of the code, could you discover a link to ‘the work’

itself. One of the works, Alex Galloway’s What You See Is What You Get, provided no

visible interface whatsoever. A collection of short, illicit, apparently malevolent scripts,

the project was not run but read, legibly demonstrating how easy it is to

programmatically choreograph social (informational) disorder.

Fig. 6: Alex Galloway, What You See Is What You Get (2002)

Galloway’s work appears as the most pointedly critical-activist. Other works in this

camp included Sawad Brooks collage of global news sites, Global City Front Page

(Brooks, 2002), and Golan Levin’s humorous reflection on the absurdities of US foreign

policy (paranoia), AxisApplet (Levin, 2002). Levin’s work provides a map of the world.

The user clicks on any three countries and a text note explains the nature of the axis.

52

Clicking on Brazil, Russia and Australia, for example, produces an ‘axis of huge, oil-

producing, vodka-exporters’. In his code comments, Levin explains:

President Bush’s assertion that North Korea, Iraq and Iran form an ‘Axis of Evil’

[…] was more than a calculated political act – it was also an imaginatively

formal, geometric one, which had the effect of erecting a monumental, virtual,

globe-spanning triangle. (Levin, 2002, code annotation)

Here then a strange link is opened up between cultural and formal interests. Culture

appears as metaphor for a dimension of abstraction, which seems a back-to-front way of

regarding things but also indicates the charged, metaphoric character of coded

abstraction. It is less about the immediacy of vision (in a classic modernist sense) than

the instantiation of aspects of structure and system. I will come to the more explicitly

abstract works (which constitute half of the overall works) shortly, but three other works

represent an interesting transition to more general formal concerns.

Fig. 7: Maciej Wisniewski, The Meaning of Life Expressed in Seven Lines of Code (2002)

Maciej Wisniewski ’s The Meaning of Life Expressed in Seven Lines of Code is an

enigmatic work that addresses issues of time and distance through the combinatory

simultaneity of grid-based display. It establishes a poetic friction between the array-

53

based structures of code and dimensions of human experience. Wisniewski suggests that

the work ‘depicts a skewed view of geography, time and history, whose space and time

elapses during the day and at night and stretches itself at sunrise and sunset’ (Wisniewski,

2002, code annotation). The concern here is not with the politics of software but with its

poetic formal imaginary.

Brad Paley’s CodeProfiles reveals a strongly self-reflexive concern with software. It is a

work in which code seems to display itself. The code appears in a semi-abstract manner

as sets of programmatically formatted lines. Moving the mouse across specific lines

displays the actual code. The code’s operations are depicted as waves of changing line

colour and white arcs that communicate between one code module and another. Paley

describes the project in the following terms:

The code reads in its own source and displays it in a tiny font, then moves three

points in “code space”. It essentially comments on itself. (Paley, 2002, code

annotation)

Fig. 8: Brad Paley, CodeProfiles (2002)

CodeProfiles is cast then as a work of recursive meta-reflection. It charts associations

not only to Conceptual Art but to the recursive irony of Turing and hacker culture (the

latter is perhaps most famously evident in Richard Stallman’s acronym GNU, which

stands for GNU is Not Unix). The work shapes reflection then in formalist rather than

critically engaged terms.

54

John Klima’s Jack and Jill (Klima, 2002) is a playful meditation on game-based

parametric characterization and life. Jack and Jill represent two points and the bucket at

the top of the hill represents the third. A set of simple radio buttons allows the user to

control whimsical aspects of each character’s behaviour, from how eager they are to get

the bucket to whether or not a male chauvinist or feminist approach is preferred. The

characters then respond appropriately – typically frenetically crashing into one another as

they run up and tumble back down the hill. The references here are to the cultural field

of gaming; however the work represents less an example of cultural critique than a

whimsical meditation on aspects of conventional game form and modes of programmatic

identity.

Fig. 9: John Klima, Jack and Jill (2002)

The remaining six works are much more explicitly formal in orientation, adopting a

strategy of visual abstraction. Martin Wattenberg’s ConnectApplet provides a

representative example. A set of three points form a triangle hemmed in by rippling

lines. The points can be moved to alter the triangle, which slowly transitions to its new

state. Within this context, visual abstraction serves as a means of signalling the

structuring force of code as another order of abstraction. As Brad Borevitz suggests,

‘[t]here is a way in which the basic programmatic logic of the work is as clearly evident

in its visual presentation as it is in the code itself’ (Borevitz, 2004: 304). The work

55

represents a reflective circle, with the visualization summoning an awareness of the code

and the code structuring the visual display.

Fig.10: Martin Wattenberg, ConnectApplet (2002)

Other works by Mark Napier, Kevin McCoy and Camille Utterback work in a similar

fashion (Napier, 2002; McCoy, 2002; Utterback, 2002). Mark Napier’s

SpringyDotsApplet is interesting because it introduces a third dimension of conceptual

abstraction. Alongside the code and the softly transparent algorithmic drawing there are

dots and lines that serve to further reinforce the relation between the conceptual layer of

mathematical abstraction and the manner of visualization. The dots and lines make the

underlying constraints that structure the formal exercise lucidly apparent.

Fig. 11: Mark Napier, SpringDotsApplet (2002)

56

Scott Snibbe’s Tripolar draws flower-like squiggles based on a chaos algorithm; it

simulates a pendulum swinging above three magnets. This is the stuff of school science

fairs, except that Snibbe’s code comments suggest another level of concern:

The source code demonstrates the “meta-chaos” of the program itself. A set of

key variables defines all the parameters of the simulation. Changing any one of

the parameters radically alters the artwork, in most cases making it non-functional

– in some cases the program will hang, in others the paths will explode, implode

or oscillate. (Snibbe, 2002, code annotation)

The software reveals, once again, a recursive aspect. It stages chaos in terms of its own

parametric deconstruction. Evident here is a peculiarly abstract rendering of critical-

cultural concerns, in which culture is replaced by a cosmological perspective on the

behaviour of systems. Deconstruction becomes less political than mathematical and

scientific.

Fig. 12: Scott Snibbe, Tripolar (2002)

A More Fundamental Tension

I have described a context for software art, some crucial initial events and two broad

aesthetic tendencies. It is beyond the scope of this study to offer a detailed survey of the

development of software art since then. Both formal and activist tendencies are still very

much in evidence, although the former probably has greater prominence. The formalist-

inclined Processing integrated development environment won the Gold Nica in the Net

Vision category at the 2005 Ars Electronica and has provided an important context for

57

experimental digital arts practice. Many art schools around the world have adopted it as a

teaching tool. Processing has also moved beyond an exclusive focus with code to engage

with the sphere of physical computing. A number of sister projects such as the Arduino

microcontroller/IDE provide an accessible means for artists to engage with the creative

possibilities of electronics and kinaesthetic-interactive new media. Another area of

expansion has been into the field of mobile device computing and locative media. These

are efforts to move experimental software art beyond the narrow scene of conventional

desktop computing. Critical-cultural software art lacks this technically-oriented identity.

It coheres instead in events such as the annual Read_Me festival, community sites such as

the Run_Me software art archive, and a range of publications, such as the proceedings of

the 2004 Software Art & Cultures Read_Me festival (Goriunova and Shulgin, 2004) and

the writings of Fuller (2003) and Cramer (2002, 2005).

While I have focused on the difference between formalist and critical-cultural software

art, and the distinction certainly has currency within the field, the distinction is also, in

my view, deeply problematic. It works to obscure and repress more fundamental tensions

that affect the character of software art. Apart from any critical questioning of the nature

of coded systems or of the culture of software, software art suggests even more basic

questions concerning the relation between software (as a space of instrumental making)

and art (as a space of aesthetic making). The current emphasis on formalism versus

culturalism (Cramer, 2002; Lillemose, 2004) works to neglect the relation to software

precisely. It describes a tension within art, within the space of art’s conventional

imaginary. Formalist software art, it would seem, sublates the discursive practice of

technical software into a properly aesthetic, purely conceptual, space, while critical-

cultural software distances itself from the rational and instrumental dimensions of

software to focus entirely on gestures of critique and deconstruction. In both instances,

software is lifted up to art. Software art is regarded as software stripped of its awkward

and embarrassing features to become art, abandoning its base concern with efficiency,

disguise and tool-based functioning to appear either as a space of formal purity or of

socially engaged action. But this is to ignore that both formalist and critical-reflective

software art engages with code at a practical level and that this engagement has

58

consequences that affect art as well as software. Formalist software art does not simply

deal at the level of the rarefied aesthetic concept; it writes software, it engages with the

medium as a specific discursive field. Similarly critical-cultural software must actually

work (if it is to be literally software and not an aesthetic commentary on code). It must

function. It must adhere to the same regimes of abstraction, procedure and rational

efficiency that constitute the language of instrumental software production.

My interest in the second half of this thesis is to explore various aspects of this tension

between software and art. The tension takes shape in terms of three basic dilemmas that

confront software art: the dilemma of position; the dilemma of visibility; and the

dilemma of recursion.

The Dilemma of Position

How is software art to conceive its relation to more general practices of software

production? Particularly, how is it to conceive its relation to the spectre of commercial

software production? Programming, after all, is not simply a language to be freely

spoken; it is socially and economically situated. There are specific conditions of speech.

In old-fashioned Marxist terms, the dilemma here is of conceiving the relation to the

means of production.

In their recent survey of currents within contemporary digital art, At the Edge of Art,

Joline Blais and Jon Ippolito (2006) employ biological metaphors to describe the strategic

position of digital art. Society is conceived as a body that is really and imaginatively

assaulted by the virus of technology. Digital art is cast as a protective antibody that

adopts the form of viral technology in order to defeat it (Blais and Ippolito, 2006: 8-13).

This conception seems very problematic. How can the integrity of the social be

conceived apart from the thought of technology? If, as Blais and Ippolito argue,

technology is not only the exteriority of machines and code, but also something that is

vitally socially constructed (Blais and Ippolito, 2006: 10) – that exists as much

ideologically as materially – then how can technology be regarded as a virus? How can it

be conceived as an exterior threat? Furthermore, if art serves as an antibody then how

can it possibly match the power of the technological virus? How does it find the means

59

to match its rapid mutations? How does it hope, within the fragile and contradictorily

autonomous space of art, to actually defend this society (stripped of its technological

basis, conceived in vague, romantic humanist terms) from such a huge and abiding

threat? In my view, Blais and Ippolito’s conception of digital art oversimplifies the

complex relations between society, technology and art, accords digital art an impossible

measure of social responsibility, and reduces art to a role of amelioration and protection

(neglecting its irruptive potential).

A more persuasive model of art’s social positioning is provided by the Frankfurt School

theorist Theodor Adorno. In his last and unfinished work, Aesthetic Theory, Adorno

(1997) emphasizes the contradictory character of art’s autonomy, which at once resists

regimes of instrumental rationality and is necessarily implicated within them; not only in

terms of its commodity status but also in terms of its legibility as a spiritual alibi for

capitalist social relations. While Adorno approves art’s capacity to model alternative

social relations and non-exploitative forms of labour and manufacturing, he is also keenly

aware that this space of autonomy – in which alternatives are projected – is illusory,

compromised, and thoroughly determined by the wider social relations that enable and

circumscribe it. In this tension, in this friction, in this sense of contradiction, Adorno

discovers art’s genuine critical capacity. Art must tease out these social tensions in the

very texture of the work – less at the level of shaping explicit political messages than in

terms of engaging rigorously with the technical, formal and material conditions of a

specific medium.

In this light, if software art wishes to regard itself as a form of reflective critique, then it

must acknowledge its dependence on the broader institutional and discursive space of

conventional software, its involvement in its language, mechanisms and cultural forms,

and its relative lack of social purchase and cultural power. It is this awareness of

dependence, marginality and inevitable association that lends software art the capacity to

pose worthwhile questions for both art and the realm of a narrowly conceived

instrumental rationality.

60

My aim in chapter 5 is pursue this question of position within the specific context of

software art’s relation to the 3D graphics engine. I argue for a notion of anachronistic

experimental practice that both draws upon and questions the technological and aesthetic

models provided by commercial software production.

The Dilemma of Visibility

Software art insists upon making code visible. This is its primary demand. Only by

making code visible can it constitute programming as aesthetically reflective. Yet code

itself would seem to resist visibility, and to resist it in a least two distinct ways: firstly by

deliberately, structurally, hiding; and secondly by disappearing within the context of

machine functioning. Let us consider each of these two modes of resistance.

Hiding

The first is classically evident within object-oriented programming in terms of the

principles of abstraction and encapsulation (see chapter 2). Abstraction is not only the

positive representation of something in a symbolic form; it also indicates a motion of

leaving behind. That which is abstracted no longer itself appears. It is replaced by the

abstraction. While this work certainly has a reflective aspect, its consequences are to

make reflection itself more difficult. The many layers of computational process work

precisely to make lower layers disappear. The principle of encapsulation denotes a

particular form of this disappearance in which specific internal features of an object are

deliberately hidden from view in order to protect them from unwarranted interference and

to enable the simplicity of a general public interface. Encapsulation works both to

protect the integrity of individual objects and to enable them to be treated as simple

building blocks in more complex structures. A work of hiding then is implicit within the

linguistic structure of contemporary programming. Object-oriented programming

involves choreographing a play of hiding and manifestation. Within this context, how is

the relation to art to be described? What does it mean to insist that code be visible, that it

resist its own discursive strategies, and plainly appear?

The approach, adopted by the CODeDOC exhibition, of literally displaying code may

have been appropriate within the context of drawing attention to this normally neglected

61

space, but seems hardly adequate as a typical strategy. For a start, code is simply not

legible to non-programmers. Visible code makes the very general point that code is

significant, but beyond that it serves as little more than a connotative surface – indeed it

can quickly work to mystify software art, to suggest some realm of arcane, abstract power

that bears little relation to actual, practically-directed programming. Even programmers

have difficulty simply reading code. Even the person who actually wrote the code can

have trouble making sense of it (especially after a few days or weeks away from it).

Code is most legible as it is being written, especially in the alternation between writing

and execution. In this sense, it resists entirely contemplative visibility (the traditional

form of the aesthetic). Code is engrossing within the overall event space of writing,

performance and debugging. To some extent, the notion of software art represents the

artist-programmer’s fantasy that this space of creation may somehow take literal,

exhibitable shape for an audience. But this is not really possible. Programming is

essentially participatory rather than something to be seen (an aesthetic spectacle). In

order to become visible it has to persist with abstraction. It has to hide and shape

disguises. It has to render the dimension of code metaphorically apparent. Cramer and

Gabriel acknowledge this point when describing the Web Stalker alternative browser:

The code of the Web Stalker may dismantle the code of the Web, but does so by

formatting it into just another display, a display which just pretends to “be” the

code itself. (Cramer and Gabriel, 2001: 2)

In this sense, the notion of rendering code visible entails something other than a

puritanical resistance to code’s processes of disguise and layering. Revelation is itself a

staging, a manifestation, a motion away from origin.

Functioning

The second mode of disappearance is operational. Code disappears in the motion of its

running. It passes away from itself. This reveals a fundamental, existential form of the

instrumental, for the instrumental is that which does not stop, which does not rest upon

itself, or imagine itself as an end, but that rather directs attention elsewhere, shaping, as

Heidegger argues in relation to technology, a ‘bringing forth’ (Heidegger, 1978: 293). So

62

to make code visible is ultimately to insist that it stop, that it no longer be constituted as a

passage into functioning. Beyond this global context of functioning, there is the whole

question of how art can engage with code’s integral and intricate instrumental character,

of the way it is structured at all levels in terms of the demands of efficient running.

Could this actually represent the genuine critical challenge of software art: to somehow

find the means to reflect at the limits of reflection (within the blindness of process)?

The dilemma of visibility raises then a broader issue: strategies of disguise and

disappearance are aspects of the instrumental character of software. Inasmuch as

software art produces ‘working’ software it inevitably engages with issues of silent,

hidden and efficient operation. I explore the issue of software art’s relation to the

instrumental character of software in chapter 6.

The Dilemma of Recursion

In an article on Cramer’s conception of software art, Troels Degn Johansson argues that

Cramer paints software art into a corner (Johansson, 2004: 151). All it can do is reflect

on its own conditions of formal or cultural-critical being. It is stuck in a recursive loop of

endless and ultimately disabling self-analysis. This is evident in the strategies of visual

abstraction within formalist software art, as well in the emphasis on meta-level critical

commentary within culturalist software art. Partly because the mechanisms of code are

so hidden within conventional software, software art must devote all of its energies to the

contrary work of reflective exposure. Is this inevitable or is there the potential to

represent software art differently, to imagine code – the mechanisms of code – as a form

of opening? If so, how can this work of opening be enabled without compromising the

work of reflection? One mode of opening is the relation to the discursive space of

instrumental software that software art maintains as an inner tension. My aim in Chapter

7 is to explore three other possibilities of opening.

The first is straightforward; it involves tracing relations beyond the apparent aesthetic

enclosure of software art, exploring its links to wider aesthetic concerns and forms of

media. Rather than constituting an entirely unique and autonomous discursive space,

software art is shaped by and enters into relation with all manner of other traditions and

63

technical forms of art. I am particularly concerned with how aspects of my video art

practice anticipate and are affected by my software art practice.

The second form of opening involves conceiving a relation between software and the

alterity of the real. In its abstraction, in its systematic character, software may seem

altogether removed from a traditional concern with the otherness of real things, but

precisely through its difference it can also manifest a return; one that takes shape as a

friction and poetic summoning. This concept is explored in relation to my interactive

documentary project, Halfeti – Only Fish Shall Visit.

The final possibility of opening involves questioning the thinking of recursive closure

itself. A genuine reflection upon software reveals a dimension of non-identity within the

texture of computation. Rather than a repetitive finitude that is absolutely clear,

transparent and reflective – there is a dimension of alterity that breaches software from

within. This is evident for me less in programs that deliberately conjure up the illusion of

organic difference than in works that pursue the binary to the point that it suddenly

becomes mysterious.

Conclusion

This chapter has explored the emergence, bifurcated conception and dilemmas of

software art. My argument is that the opposition between formalist and culturalist

software art works to articulate the field in safely aesthetic terms, ignoring the more

fundamental tension between instrumental software and reflective art that provides its

genuine impetus. The three dilemmas that I have described are all in various ways

dilemmas of reflection – of the reflective sense of formal or critical autonomy, of the

aesthetic need to make code reflectively visible and of reflection as a recursive trap. The

question of reflection lies at the heart of this thesis. I wonder about the viability of this

relentless demand for reflection, the refusal to countenance the possibility that reflection

may be better subsumed within a process of making rather than regarded as purely,

autonomously constituted and all consuming. The following three chapters represent an

attempt to sketch aspects of this alternative conception.

64

Chapter 5: Oblique Reflections: Software Art and the 3D Games Engine

Introduction

This chapter addresses the dilemma of position discussed in the previous chapter. It is

concerned with how the field of software art conceives its relation to the industrial-

technological infrastructure that surrounds and enables it. Specifically, how does it

reflect upon the phenomenon of the 3D games engine? This chapter considers a range of

tactical responses to the dilemmas of scale, encapsulation and conventional aesthetics that

the game engine raises for software art. The main focus is on the strategy of

anachronism. Anachronism resists the rhetoric of technological novelty, working instead

to discover areas of creative purchase within the detritus of industrial (commercial

gaming) progress.

Let us attempt to clarify some of the problems that commercial games technologies raise

for experimental software art practice.

Scale and Complexity

The development of a cutting-edge commercial game depends upon huge financial

investment and a large-scale, multi-tiered production process that involves work at the

hardware, software and creative design levels. Despite the heroic myth of its cottage-

industry genesis – stories of John Carmack and John Romero laboring away in relative

isolation on Wolfenstein 3D (1992) and Doom (1993), hacking together the architecture

and iconography of first-person game navigation through sheer force of geeky genius and

popular cultural will – the 3D gaming engine is clearly the complex product of decades of

military, scientific and computing/entertainment industry research into the visual and

interactive possibilities of computer graphics. This is not to deny the visionary role

Carmack and Romero played in developing specific technological solutions and, more

generally, in linking emerging trends in computer graphics to the genre of visceral shoot-

em-up gaming, but it is to insist that 3D gaming engines, like factories and telephone

systems, are sophisticated industrial forms that resist efforts at individual authoring.

Their sense of alienating technological scale and complexity presents strategic problems

for a field such as experimental new media art where the ideology of individual (or local

65

level) creative control remains important. How can artists engage with the potential of

technologies such as the 3D gaming engine when the scale of the technical apparatus

radically exceeds the space of individual creative effort?

Encapsulation

As discussed in chapter 3, the notion of encapsulation within the field of object-oriented

programming refers to the principle whereby code modules – specific areas of data and

functionality – are protected from unwanted external modification through the creation of

explicit public interfaces and a formal etiquette of access definition. At the general

strategic level, encapsulation represents an effort to manage technological complexity, to

enable systems to be pieced together in a modular fashion. Code modules are positioned

as black boxes that take input and produce output while the details of implementation can

safely be ignored. The whole conception of a gaming engine is based upon this principle.

Contemporary game engines often encapsulate their functioning to such an extent that it

is possible to develop original games without any dedicated work of coding at all.

However, this raises a problem of aesthetic purchase. Is it acceptable to bracket the

problem of the engine and focus exclusively on the dimension of alternative game

content, or is a closer engagement with the underlying technology necessary? There is no

single answer to this question. While some so-called ‘art games’ represent a fairly

straightforward work of game ‘mapping’ (creating new levels and game art for an

existing engine), software art takes a greater interest in the dimension of code. Software

art is concerned with the experimental possibilities of code-based generic abstraction and

spatial-interactive representation that the game engine represents. It wants to crack the

game engine open and reinvent it. The encapsulated character of gaming technologies,

the many layers of abstraction and hiding that enable their functioning are a source of

both frustration and inspiration, suggesting all kinds of opportunities for experimental

intervention and revelation (uncovering).

Conventional Aesthetics

Closely related to the issue of encapsulation is the sense that gaming technologies

(particularly game engines) are not neutral entities. They encode specific aesthetic

assumptions. For example, the emphasis upon perspective, back-face culling, naturalistic

66

shading algorithms and the like within 3D graphics engines reveals a clear orientation

towards visual realism. While the tradition of avant-garde experimental art is suspicious

of spatial illusion, commercial media (films and games) position perspective-based

immersion as the essential axis of representational and interactive aesthetics. The gliding

optical vector of the first-person shooter represents space as utterly seamless. None of

this comes easily. The technical problem of stitching a three-dimensional game world

together – of enabling smooth movement from one space to another and of managing the

display of large complex spaces – is a vital one in 3D engine design. It typically involves

the crafty use of portal systems so that the player constantly moves between partial

worlds (from one rapidly loading data structure to another). The whole world, as such,

never exists. The illusion of holistic space is a bubble with the player at its center. The

bubble changes as the player moves about and everything else is darkness (or the barest

map). This is, of course, conceptually very interesting, suggesting links to notions of the

Cartesian subject, etc., but it is not explicitly highlighted within commercial games. It is

represented as a technical problem rather than as a creative option worth exploring.

There is a vital need then to engage with the mechanics of the engine to open up other

aesthetic possibilities.

Tactical Responses

These problems mean that the commercial gaming engine is positioned awkwardly for

software art practice. It is tempting (constituting an iconic popular form of virtual

interaction and suggesting vital areas of cultural and aesthetic enquiry), but at the same

time arcane, inaccessible and hidden. How have software art and the broader tradition of

experimental new media dealt with this problem? How have they conceived and

practically negotiated a relation to the technical means of production? Five strategies

seem evident: alliance (artists and scientists working together); abstraction (artists

determining a specific conceptual-aesthetic space independent from the necessity of

technical engagement); aggregation (artists working together to match the scale of

industrial production); appropriation (artists co-opting mainstream technologies as a

mode of critical-deconstructive practice); and finally, and most relevantly for my

purposes, anachronism (artists abandoning any claims to technological novelty and re-

67

working aspects of the technological heritage). Let us consider each of these strategies

more closely.

Alliance

The first strategy involves an alliance between artists and computer scientists. In their

famous 1825 article, ‘The Artist, the Scientist, and the Industrial: Dialogue’, the social

philosophers Henri Saint-Simon and Leon Halevy suggest the possibility of a utopian

accord between art, science and industry, in which these traditionally separate disciplines

form an alliance to advance progressive societal interests (Saint-Simon, 1975). From a

contemporary perspective, informed by the legacy of critical theory, post-structuralism

and postmodernism, this early vision of the avant-garde is likely to appear naïve. We are

less confident about the benign legacy of Enlightenment reason and very suspicious of

the rhetoric of progress. Nonetheless, contemporary new media often summons up the

rhetoric of a progressive alliance of artistic, scientific and industrial interests. The British

collective Blast Theory provides an example of this approach (Blast Theory, 2004).

Their augmented reality games such as I Like Frank (Adelaide Fringe Festival, 2004)

explore the poetic relations between real and virtual spaces and players. Produced in

collaboration with Nottingham Mixed Reality Lab, Blast Theory supplies the creative

vision, while the Mixed Reality Lab researchers provide the cutting-edge technical

infrastructure. Blast Theory is also involved in a larger research initiative, ‘Integrated

Project on Pervasive Gaming’ (IPerG, n.d.) which links together a range of creative and

scientific organizations with the aim of developing ‘a radically new game form that

extends gaming experiences out into the physical world’ (IPerG, n.d.). This involves

exploring ‘new technologies to support the creation of new compelling forms of content’

(IPerG, n.d.). It is worth noting that this strategy of alliance preserves a very traditional

distinction between creative and technical contributions. Art focuses on the conceptual

imaginative realm, while science focuses on the underlying engineering. This strategy

maintains its critical aesthetic credibility by occurring at a slight remove from the realm

of industrial, commercial application. Alliance is pursued in the guise of art-science

collaboration, rather than as industrial R&D (research and development).

68

Abstraction

Like the previous strategy, abstraction accepts the conventional distinction between the

field of creative design and technical implementation, but rather than entering into an

alliance with the technological vanguard (whether conceived in scientific or industrial-

commercial terms), it operates in isolation from them. Instead of portraying the

possibility of an avant-garde that combines cultural-aesthetic and technological novelty,

the sphere of the cultural-aesthetic becomes separated and abstracted from the technical.

The focus shifts to the game concept as an abstract space that precedes any particular

form of implementation and that can take shape experimentally without the machinery of

cutting-edge gaming technology. This is the approach that Katie Salen and Eric

Zimmerman (2004) adopt in their innovative account of the field of game design, Rules

of Play: Game Design Fundamentals. They open up the potential for an alternative,

creative and theoretical space of game design by deliberately bracketing issues of

implementation. This has considerable value, especially as commercial gaming works

within such an impoverished conceptual space, but also clearly represents a strategic

withdrawal from the problems of scale and complexity that the technological dimension

of contemporary gaming presents. So while strategies of abstraction risk devaluing the

creative, imaginative dimension of technical implementation, they play a key role in

delineating avenues of dedicated conceptual-aesthetic interest. The politically oriented

web games of Gonzola Frasca provide an example of this approach. September 12, A Toy

World (Frasca, 2003) employs the model of a simple isometric shooting game to make a

critical point about the uselessness of addressing the ‘war on terror’ via missiles. The

originality of this game lies not in its technical features, nor even in its mode of game

play, but hinges instead upon a work of conceptual recontextualisation. It is an

experiment in game-based political commentary. The technical and generic remain

important as ironic points of reference, but the key creative work is abstracted from

issues of implementation.

Aggregation

The sense of effective exclusion from the arena of cutting-edge technological

development leads to another strategy: the formation of communities of cottage-industry

69

level producers who together build alternative game-related graphic engines and the like.

The Ogre (n.d.), Blender (n.d.) and Xith3D (n.d.) communities provide examples of this

approach. While certainly building sophisticated pieces of graphics technology, their

collaborative work is not positioned as technologically cutting-edge. Instead the

emphasis is upon access, upon providing means for small independent producers to

engage with the esoteric and typically proprietary space of contemporary gaming

technology. However, for my purposes, very few of these communities are oriented

towards the sphere of experimental new media arts. Rather than questioning the aesthetic

assumptions of commercial gaming technologies, they are more likely to provide ever so

slightly pale copies. Undoubtedly the engines can be put to other uses, but any work of

fundamental modification is likely to occur in a less collective context. Paradoxically,

more relevant communities have a less explicit relation to the realm of gaming. The

Processing community (Fry and Reas, 2001, continuing.), as we have seen in the

previous chapter, focuses on providing artists with access to the creative space of

programming, supplying technologies and a supportive context for the development of

experimental projects that explore alternative possibilities for 3D rendering and the like.

It supplies nothing like a game engine, because the focus is not upon games as such. The

Processing environment is much more concerned with enabling artists to engage with

code (and the aesthetic possibilities of code) at a more fundamental level. It deliberately

strips away scale, complexity and encapsulation in order to establish a technical context

in which genuinely creative questions can be posed. In its tactical effort to simplify,

Processing has conceptual affinities with the previous strategy of abstraction. Processing

aggregates precisely in order to enable individual, cottage-level experimental practice.

Appropriation

The popular practices of ‘modding’, ‘mapping’ and hacking bits of commercial game

technology to produce alternative critical or whimsical pieces of new media art provide

examples of appropriation. Gaming engines have been ‘appropriated’ to enable, among

other things, abstract animation and drawing, data visualization, performance, political

satire and film-making (machinima) (see the alternative games website, selectparks, n.d.).

At times appropriation can represent a deliberate assault on proprietary game formats.

70

Cory Arcangel’s (aka 8-bit Collective or Beige programming ensemble) Super Mario

Clouds (2003) hacks into the hardware of the Nintendo game cartridge to strip away

everything in the game but the floating background clouds. However, appropriation can

also work in more agreeable harmony with the interests of commercial gaming. Many

mainstream game developers allow and encourage efforts at creative modification and

reconfiguration. They release source code and mapping tools to facilitate grass-roots

production of new versions of an original game. They deliberately position their products

as emergent cultural and technological phenomena. The interesting implication is that

commercial games, as abstract engines and as generic fields of parametric possibility,

may be said to logically anticipate all their various aesthetic appropriations. The game

engine is a protean meta-level space of aesthetic potential that imaginatively

encompasses all of its specific creative instances – even those that criticize and

deconstruct it.

Anachronism

This strategy, specific to software art, engages closely with technology but in a distinct,

deliberately ‘out-of-time’ critical-aesthetic manner. Excluded from – and avoiding – the

rhetoric of technological novelty, anachronism tinkers, reflects, reconstructs and re-

imagines aspects of the computational heritage. It overlaps to some extent with strategies

of appropriation but places a greater emphasis on ‘original’ coding.

Sketching a cultural context for software art, Manovich (2006) suggests that whereas the

postmodern media artist (of the 1970s-1990s) engages in a work of pastiche and

appropriation, the software artist (of the late 1990s and early 21st century) insists upon a

creative tabula rasa. The emphasis shifts to coding things from scratch, avoiding both

the tools and illusory mimetic rhetoric of contemporary commercial new media

(animation, games, etc.). According to Manovich, this represents a return to an earlier

model of artistic practice – the model of the ‘romantic/modernist’ genius. Instead of

drawing cynically upon the available media culture, iconography and creative tools (with

the sense that there is no viable aesthetic space beyond), the software artist ‘makes

his/her mark on the world by writing the original code.’ He stresses that ‘[t]his act of

71

code writing itself is very important, regardless of what this code actually does at the end’

(Manovich, 2006: 211).

While this work of writing is clearly very significant, I am not convinced that it summons

a pure terrain of original expression. Indeed the small qualification that Manovich makes

– the acknowledgement that this code may be inconsequential, that it may not do

anything especially significant or novel – suggests a tension and uncertainty surrounding

the nature of ‘original coding’. The blank sheet of code is not a simple surface. It is both

a veil and an unveiling. It is both clean (creatively open) and thoroughly inscribed. It

floats above a framework of encapsulated processes that extend down to the hardware

level and is structured as a palimpsest, in which the software artist repeats, writes and

interrogates the coding tradition. The software artist makes his/her ‘original marks’ in

the space that is left once technological progress has moved on. Originality lies in

summoning up a dimension of alterity within this abandoned landscape, discovering

through self-conscious anachronism (‘non-original’ coding) a field of aesthetic

possibility. Whereas the direction of commercial technological development is to

develop more and more sophisticated layers of abstraction that work to make human

engagement with computer processes as intuitive and kinaesthetically engaging as

possible, software art deliberately returns to the earlier, retro model of arcane text-based

interaction. As I argue in chapter 4, the GUI (graphic user interface) – and the dream of

the GUI – disappears to be replaced by the IDE (integrated development environment)

and the text console. Software art partakes of anachronism in its very concern to

structure human-computer interaction in terms of the traditional metaphorics of

programming.

The strategy of anachronism then engages creatively with the technological tradition by

deliberately withdrawing from any attempt to appear at the cutting-edge. The aim is less

to project an unseen future than to re-imagine and re-invent the computational wheel, to

work over the detritus of technological progress searching for points of creative

intervention. Anachronism acknowledges the asymmetry between art and the space of

technological development, but insistently searches for means to reflect upon the

technical, to open it up to a process of critical-creative enquiry. In the process, the

72

relation to gaming technologies often becomes indirect. While there are many artists

producing alternative games, there are significantly more engaged in formal

experimentation with aspects of 3D drawing and rendering. This genre of creative

practice (very prominent in the Processing community) represents a response, at least

partly, to the conventional illusionistic assumptions that inform the structure of the

commercial game engine.

I have described these strategies separately, however it needs to be acknowledged that

they very often communicate and overlap. For example, although abstraction, as I have

defined it, resists engaging with the sphere of technical implementation, it has vital

importance in terms of describing a dedicated space for conceptual-aesthetic reflection.

Anachronism, at its best, incorporates a dimension of abstraction; it distills the

conceptual-aesthetic relevance of specific technical processes rather than simply

reconstructing them. Similarly, strategies of appropriation can often blend into strategies

of ‘original authoring’ (anachronistic re-invention). Appropriation finds itself opening on

to an original space while attempts to code from scratch discover a relation to the legacy

of coding achievement. Even alliance can reveal other dimensions. The Blast Theory

augmented reality projects, despite the rhetoric of avant-garde interdisciplinary accord

and technological novelty, represent an impressive effort to re-orient aspects of standard

industrial R&D, to gently appropriate science towards an investigation of critical-poetic

issues related to virtual identity and emplacement.

The five strategies represent less a static set of antagonistic options than a dialectical

constellation. Together they constitute a field of productive tension. The key tension

concerns how the relation between art and techne is conceived, but there are also more

subtle tensions concerning issues of originality and the tactical relation of art to the

broader sphere of technological progress.

Software Art Works

With this general scheme in place, let us consider how software art reflects on the 3D

game engine. My interest is in how the various tensions that I have described above are

played out within a specific new media arts context and in the texture of specific software

73

art works. My initial focus is on two exemplary projects of appropriation (resource

hacking) – JODI’s SOD (1998) and Untitled Game (2002). These visionary works

reconfigure the Doom and Quake engines and anticipate vital paths of investigation for

contemporary software art. If SOD and Untitled Game address the 3D games engine

directly, the relation is more oblique within contemporary software art. A consideration

of one of my own recent projects will provide a means of clarifying the nature of this

relation.

JODI Game Modifications

JODI is the Dutch-Belgian duo of Joan Heemskirk and Dirk Paesmans. Their

modifications of the Doom and Quake engines are sublimely deconstructive reflections

on the formal architecture of the first-person shooter. Although their work involves code-

based intervention, it is clearly not software art that begins with a blank page (the

imaginary, theatrical scene of a blank page). It is work that explicitly highlights the

slippage between postmodern strategies of appropriation and (undecideable) strategies of

‘original authoring’.

SOD

SOD hacks the Doom engine to represent the grim corridors of the original game as

abstract black and white shapes. Stripping away the illusion of figurative, textured,

shaded space and maintaining only minimal perspectival cues, SOD highlights the

underlying architecture and artificiality of first-person space. Structural features such as

the option screens, HUD (heads up display), portals and targeting system gain a new and

uncanny visibility. Whereas in ordinary game play, these features support the game play

and remain subservient to it, here they are foregrounded through deliberate strategies of

abstraction. Option screens become lists of semantically void geometric shapes. The

HUD displays numerical information about a game space that we can only marginally

engage with. Doors (portals) float in space, manifesting forms of transition that

undermine any naturalistic conception of a doorway and that very evidently involve the

sudden loading of new spatial data. The only element that remains largely unchanged

from the original game is the sound; it provides a residual sense of spatial integrity and

74

indicates that despite the obvious work of modification we remain in the Doom engine

space.

Untitled Game

JODI’s deconstructive strategies become even more radical in Untitled Game. Working

now with the Quake engine, Untitled Game is a set of fourteen game variants that explore

the coded-ness (or metaphysics) of 3D games. Gone, on the whole, is any lingering

concern with maintaining aspects of three-dimensionality. The focus is on the pre-space

of conceptual abstraction that shapes the underlying possibility of perceptible game

space. This is evident in the title itself which playfully employs the archetypal name

within abstract art (‘untitled’).

The names of the individual game variants are also worth considering. Many indicate

what appear to be logical ranges within the alphabet – A-X, G-R, M-W – however, the

ranges clearly overlap and bear no relation to the content of each game. Other games are

named after command key combinations – Ctrl-9, Ctrl-F6 and Ctrl-Space – however the

games make no apparent use of these combinations. Only three of the games are named

in a more ordinary descriptive manner (Arena, Slipgate and Spawn). The generally

arbitrary character of the names makes the gulf between the sphere of language and

reference (engine processes and ‘game play’) very explicit. The names are indicative of

the central critical, deconstructive concern with the disjunction between the spheres of

coded representation and spatial perception.

Turning now to a brief analysis of three of the game variants:

Arena

Arena (Figure 13) represents a sublime near-zero point of the Quake engine. There is the

sound of attacking enemies and the player can click and fire, but 3D space itself has been

altogether eliminated, leaving only a framed white screen and the HUD. This variant

points to the non-space at the heart of 3D simulation and stages it literally, visually.

75

Fig. 13: JODI, Untitled Game – Arena

A-X

A-X (Figure 14) dispenses with even more features of the original game. There is no

longer even the frame or the HUD. Players encounters a cascade of data; they encounter

3D space as the engine (at some relatively high-level) conceives and processes it. This is

a particularly clear example of the critical focus on the discontinuity between code and

the illusion of space.

Fig. 14: JODI, Untitled Game – A-X

Q-L

Q-L includes recognizable aspects of Quake 3D space, but in a totally vertiginous

manner. Instead of predictable visual orientation and motion, the camera spins wildly out

of control and none of the usual interactive controls work as expected. This game variant

unsettles the sense of continuous 3D space and confident first-person motion through

76

space. It suggests that spatial continuity and first-person interaction are only a fragile

mathematical fiction.

The exit screen for Q-L (Figure 15) indicates a characteristic deconstructive strategy

employed in Untitled Game. Instead of the usual set of options - ‘New Game’, ‘Single

Player’, ‘Exit’, etc. – the user encounters a jumbled set of letters that are semantically

meaningless but that adhere to the formal layout of the ordinary options screen. Anyone

with experience of Quake can infer that ‘PTJS’ signals ‘EXIT’ because it is four letters

long and positioned where ‘EXIT’ would normally be.

Fig. 15: JODI, Untitled Game – Q-L

This strategy of maintaining formal identity while simultaneously engaging in a work of

semantic scrambling is a key characteristic of the JODI modifications. However much

they deconstruct the Doom and Quake engines, they also remain true to aspects of their

underlying structure. JODI’s work obtains its critical imaginative (and political) force

precisely inasmuch as it develops a tension between the formal mechanics (and cultural

imaginary) of game engines and a more open space of creative possibility. Their work

represents a limit form of game modification. While remaining within the orbit of Doom

and Quake, they signal concerns that extend beyond the field of 3D games as such. The

Untitled Game variants, for example, are very clearly not games. They are unplayable

critical interventions that focus upon the underlying logic of spatial representation – upon

the engine as a conceptual system rather than the structure and articulation of game-play.

As much as they play upon the formal features and iconography of Quake, they also

manifest a fundamental and more general concern with the abstract logic of code.

77

Working at the limits of appropriation, they indicate the necessity of other approaches;

ones that not only modify engines but also imagine them differently. In this sense the

JODI modifications anticipate contemporary strands within software art that focus on the

creation of alternative, typically abstract, graphic engines.

Contemporary Experiments

Trawling through the Processing forums it is possible to find many examples of posts

such as the following:

Hello, As my brain is starting to smoke, and google cant seem to give me an

understandable answer, turn to you for a possible solution. my problem is as

follows: I have a point defined in polar coordinates (Zrotation, Yrotation and

distance), now i need to find out what the absolute rotation is, by that i mean a

single rotation around a defined axis that returns the same point in space. I've

been speculating that this angle is sqrt(Zrotation^2 + Yrotation^2) but i havent

been able to verify this. Is there anyone out here that have a better understanding

of this than me? also i would like to know how to calculate the axis of this

rotation. hope my explanation is understandable: Regards, Henrik, IP Logged

(Fry and Reas, 2001, continuing))

Along with Henrik, many software artists are increasingly absorbed in the technical

intricacies of 3D graphics. A huge amount of energy is devoted to solving entirely trivial

mathematical and programming problems, ones that have been solved innumerable times

in the past (and much better). To code with this sense of larger irrelevance, with this

awareness of stupidity and anachronism – this is a substantial part of what it means to be

a contemporary software artist. Typically there is no explicit aesthetic rationale;

ostensibly it is just about tinkering around with the mathematical and technical

infrastructure of 3D graphics. However, this may actually indicate the key point; this

process of tinkering is about bringing the problem of technological complexity down to a

human scale. Each specific technical problem is tantalizingly soluble at a local, human

level. In this sense, each question projects a horizon of distant but attainable technical

competence. The legible hope is that artists can obtain the relevant skills and

78

understanding to direct code in their own aesthetic interests rather than inevitably be

swept along by existing technical regimes and aesthetic assumptions.

The technological infrastructure of the 3D games engine provides a crucial reference

point for this work of contemporary experimental practice. The explosion of

sophisticated graphics technologies over the past two decades is closely linked to the

increasing economic and cultural sway of real-time 3D games. OpenGL, DirectX,

superbly fast graphics cards – all bear the imprint of the commercial gaming industry. If

software artists now have access to aspects of this technology it is substantially due to its

popularization within games. The JOGL (Java bindings to Open GL) API, which is vital

to Processing and more general Java-based software arts 3D experimentation, provides a

clear example of this debt. Although the API can certainly be applied in contexts that

extend beyond games, it is nonetheless the product of the Game Technology Group at

Sun Microsystems and can be found at the java.net site by following the following set of

hierarchical links; projects, games, games-core, jogl (JOGL, n.d.). While software art

makes use of this technological infrastructure, gaming itself, as a cultural form, is often

only obliquely acknowledged. Whereas the JODI projects explicitly confront the culture

and aesthetics of commercial gaming, software art imagines a fragile space of autonomy.

Gaming is positioned, in a contradictory fashion, as both a necessary foundation and an

extraneous imposition.

Anachronism (Again)

To illustrate this tension within the self-identity of software art, its sense of relation and

non-relation to the larger technological and cultural infrastructure, I will consider the

development of one of my own recent software art projects. This project is entitled

Anachronism in order to highlight the awkward relation to the means of production that is

constitutive of software art. I am focusing on my own project here not with a sense of its

aesthetic importance but because I can provide an under-the-hood explanation of how the

work is informed by a relation to the 3D games engine.

Anachronism began as a kind of perverse Java 2D sketching program. The idea was to

eliminate all sense of an analogue relation to manual drawing. The user would quite

79

literally draw with numbers; defining shapes by writing a series of x and y coordinates

(and control points for Bezier curves) to a text file. An additional configuration file

would describe sprites, motion and rendering styles. It is worth noting that although none

of this engaged closely with the possibility of the 3D games engine, many of the

fundamental concepts informing the structure of this experimental drawing program have

their basis in gaming technologies. The whole conception of a ‘sprite’ as a screen

instance of a graphic data structure stems from gaming, initially as an aspect of graphics

hardware and then as a software abstraction.

Having created a version of this initial – deliberately contrary – drawing program, I

became more interested in the creative possibilities of code drawing itself, and especially

in the potential to draw with animated 3D shapes. It quickly became evident that it was

impossibly slow and difficult to manually define 3D shapes, so I switched to the

algorithmic definition of simple shapes and the parsing and loading of Alias Wavefront

‘obj’ files. The latter represent shapes as lists of vertices and polygonal faces and can be

created in a variety of 3D modeling applications. My aesthetic rationale was to explore

alternative, non-figurative means of 3D rendering. This represents a characteristic

gesture of resistance to the predominant focus upon visual realism within commercial

games and animation. It follows the trajectories suggested by the JODI projects, but

would seem to articulate them in a less politically pointed and deconstructive manner. If

my first concept playfully juxtaposes code and the ideology of intuitive aesthetic

perception, my second encapsulates the dimension of code drawing in order to elaborate a

wider space of visual possibility.

However there are also more subtle implications. The shift to 3D prompted a more

explicit concern with the graphic-related structure of the 3D games engine. My interest

was in stripping back the graphic operations to a bare minimum. There would be no

back-face culling, no painter’s algorithms, no binary partition trees, it would simply be

sets of polygonal objects that could be animated and drawn as points, lines or filled

shapes. I actually avoided OpenGL (JOGL) and worked with simple Java 2D drawing

methods. This deliberate work of bracketing core areas of functionality was the key to

opening up original creative possibilities. Suddenly in the interstices of the conventional

80

engine (here re-written from scratch) there was the potential to explore something other

than the simulation of space; something that entered into to dialogue with traditional

drawing, that was concerned with the deliberate fashioning of shapes, iterative patterns

and conceptual series (Figure 16).

Fig. 16: Brogan Bunt, Anachronism (2006)

The creative work emerges then in the friction between the conventions of the 3D

graphics engine and the experimental agendas of software art. Anachronism is interesting

precisely in terms of the tensions that structure its autonomy and originality. However,

there is the difficulty that this underlying dynamic may not be directly evident in the

work. It figures as a background and is articulated obliquely. Perhaps the title makes the

point, but the question remains a vital one for software art: how can the concepts and

contextual constellations that inform the creative work of programming become lucid at

the level of the perceptible work?

Conclusion

This chapter has attempted to describe the awkward relation between contemporary

software art and the 3D games engine. It has considered the broad dilemmas of scale,

encapsulation and conventional aesthetics that the 3D games engine presents as well as

suggesting a range of specific strategic responses. My key interest has been in the

81

ambivalent character of strategies of anachronism. Anachronism appears both original

and non-original. It both imagines prospects of creative autonomy and acknowledges

relations of dependence and dialectical differentiation. If there is a problem in all of this,

it is less in terms of issues of logical contradiction than in the all too common failure to

tease out the conceptual implications of anachronistic practice. There is a crucial need

for the critical character of ‘technological tinkering’ to be elaborated within software art.

Processes of interrogation that may be apparent to the programmer need not be apparent

to the user/viewer. If experimental graphical software art is to avoid being interpreted as

apolitical and blandly decorative, then it needs to discover ways to articulate underlying

conceptual concerns (and the politics of its problematic creative positioning) more

explicitly.

82

Chapter 6: Software Art and the Instrumental

Introduction

The second dilemma of software art (see chapter 4) relates to the demand that code

become visible, that it abandon its ‘natural’ tendencies to hide and proceed silently – that

it become instead reflectively manifest. However, code insistently, structurally

withdraws as part of its overall instrumental orientation. In resisting the invisibility of

code, software art resists the instrumental character of conventional software. My aim in

this chapter is to question this rejection of the instrumental – to suggest an intimate

relation between the aesthetics of software and its functional character.

This issue takes shape for me in relation to the uncertainty of one of my own works. I

describe it as a software art work, but with some hesitation. The work lacks an adequate

aesthetic manifestation – either as code or as visible interface. It is a set of tools and an

engine. It is concerned with the representation of time and the pragmatics of enabling a

temporal display. The title of the work is Cropper_Propper_Gridder. If the work is of

any interest, it is because it pursues a poetic idea through instrumental means – or better,

it struggles to discover a potential for poetry in the aesthetic estrangement of software.

While software art conventionally resists the instrumental character of software –

struggling to make software aesthetically, reflectively appear –

Cropper_Propper_Gridder deliberately engages with the aesthetic blindness of

instrumental functioning.

The Problem of the Instrumental

Within the tradition of critical theory, the notion of the instrumental is associated with a

specifically modern mode of rationality that is oriented towards the purposive

accomplishment of tasks, in the process deliberately bracketing questions of human

value. Instrumental rationality addresses issues of efficiency and running, ignoring wider

ethical, political and cultural concerns. The sociologist Max Weber (1946) argues that

this mode of reason takes characteristic form in the mechanisms of modern bureaucratic

administration and industrial capitalism. This broadly social conception of the

instrumental is predicated on a more fundamental notion of the nature of an instrument.

83

An instrument is a device that moves but lacks free being. It produces results but without

any awareness of cause or result. It functions unreflectively. It proceeds blindly. In this

sense, despite its status as a technical contrivance, an instrument – in its motion, in its

running – comes to resemble the deterministic processes of nature. At the very outset of

his discussion of art in his 1790 Critique of Judgement, Immanuel Kant explains that ‘Art

is distinguished from nature as making (facere) is from acting or operating in general

(agere); and the product of the result of the former is distinguished from the latter as

work (opus) from operation (effectus)’ (Kant, 1980: 523). In the same manner, an

instrument can be regarded as performing operations which produce effects rather than

performing actions which shape (aesthetic) works. This indicates the obvious dilemmas

that confront any attempt to chart an association between the instrumental and the

aesthetic. Conceived as intermediary, mechanical and unreflective, the instrumental

appears directly opposed to the finality, freedom and reflective nature of art.

How, in this context, can software, as a discursive space that is substantially shaped by

the logic of the factory assembly line (Gere, 2002: 17-46; Manovich, 2005: 5), and that is

centrally concerned with issues of abstraction, procedure and function, possibly be

aesthetic? How is software art to conceive its relation to the instrumental dimension of

software? As a basis for addressing these questions, it is worth briefly sketching a more

general context of debate concerning the relation between the instrumental and the

aesthetic.

Art and Engineering

In 1920 the Russian Constructivist artist, Vladimir Tatlin, produced a proposal for

the Monument to the Third International (Tatlin, 1920). He envisaged a 400 metre

high steel and glass tower that incorporated a dynamic spiral structure and rotating

internal rooms. It was utopian art adopting the guise of an architectural plan and

was criticized for its impracticality by revolutionary artists and politicians alike.

Another Constructivist artist, Gabo, cautioned Tatlin to ‘either create functional

houses and bridges or create pure art, not both’ (Wikipedia, n.d.). The work was

condemned for confusing two distinct languages and modes of making: art and

engineering. Furthermore it transgressed the conventional boundaries between the

84

aesthetic ‘end-in-itself’ and the sphere of useful things. These ‘flaws’ are also the

basis for its lasting significance as an icon of avant-garde art. The monument

posed the essential problem concerning art’s relation to modern forms of making

and, more generally, art’s relation to industrial modernity.

Two broad historical strategies emerge in relation to this challenge. On the one

side there is the model supplied by Dada of incorporating technology and

technological forms of making as a means of waging a multi-pronged assault on

autonomous art, bourgeois humanism and instrumental rationality. This approach

takes archetypal form in Marcel Duchamp’s Large Glass – The Bride Stripped

Bare by Her Bachelors, Even (1915-23), which provides an ironic take on our

pleasant fictions of love, free will and organic, human difference by representing

human courtship and erotic coupling in mechanical terms. In a parodic reference

to the history of industrial machinery, the processes proceed upwards from steam,

to internal combustion engine, to electricity (Duchamp, 1973: 39). This is not, of

course, a working machine. It is a playful, subversive, metaphorical apparatus. It

functions as a piece of critical commentary rather than as a literal instrumental

device. A crucial distance then is maintained between art and engineering so that

art, however fractured, however affected by industrial modernity, can shape a

properly aesthetic space of critique.

The other strategy, evident especially in Constructivism and the Bauhaus, strives

towards a unity of art and industry. It projects an integration of the aesthetic (as

mode of formal appearance) and the instrumental (as sphere of functional, mass-

produced products). Art abandons its reflective autonomy to enter into the texture

of practical things. While crucial as a critique both of art and alienated labour

(Burger, 1984; Huyssen, 1986: 12), this strategy runs the risk of providing an

aesthetic sheen for forces that actually undermine the potential of art to suggest

alternative social and imaginative possibilities. Furthermore, this effort to draw a

close association between the aesthetic and the instrumental is much easier to

manage with simple, everyday things – coffee cups, tables, light fittings, etc. – in

which form and function share a common immanent material being. Software

85

programming is harder to conceive in these terms because it institutes a separation

between the domain of instrumental instructions and the visible interface. The

former indicates a space of symbolic abstraction and functioning that is hidden

from view – that is not instantly coextensive with the terrain of user interaction.

Although authors such as Donald Knuth (1973 – 1998) portray programming as a

practical art which can be regarded aesthetically in terms of values such as

economy and elegance, this makes the aesthetics of code only accessible to

programmers and represents a return, as Cramer argues, to a very traditional neo-

classical aesthetic space.

In short, neither critical nor integrative strategies genuinely engage with the

instrumental in its non-aesthetic distance. Critical avant-garde art resists literal

instrumental functioning while modernist design works to aestheticize the

functional. Neither provides an adequate means of conceiving the field of software

programming, which refuses to adopt a conventional aesthetic form, which is

directed elsewhere, which shapes instructions rather than an easily critical or

conciliatory work. If there is anything unique about the situation of software art it

lies precisely in this search for an aesthetic rationale without the possibility of any

recourse to the non-instrumental or the consolation of immanent form.

A Problematic Definition

The jury for the 2002 Moscow Read_Me 1.2 festival offer an influential definition of

software art:

We consider software art to be art whose material is algorithmic instruction code

and/or which addresses cultural concepts of software. (Read_Me 1.2 festival jury,

2002)

Although intended to be inclusive, this definition works to obscure the key issue of the

relation to the instrumental. Instead it focuses on distinguishing two strands of software

art practice – formally oriented code-based experimentation and culturally oriented

software critique. The formalist option is expressed in terms that recall the language of

86

high modernism; the focus is upon defining the material essence of the software medium,

which here takes the form of ‘algorithmic instruction code.’ In this manner, a complex

cultural assemblage – a language and a field of discourse – is reduced to the status of a

simple material, like paint or clay. This reduction of code to the simplicity of an

aesthetically malleable material is what enables formalist software art to be represented

as a purely conceptual meditation on aspects of system without any integral concern with

dimensions of culture. However, a close engagement with the medium of code can have

other implications. It can have a cultural dimension. It can represent an engagement

with a specifically culturally determined discursive space. More particularly, it can

represent an interrogation of the instrumental language and strategies of conventional

software. But unfortunately, by positioning code as a base aesthetic matter, formalism

loses sight of this possibility. It is left to the other side of the definition to engage with

software as a cultural phenomenon.

But correspondingly, although the culturalist option ‘addresses cultural concepts of

software’ it seems to lack a specific point of discursive purchase. How is the nature of

this mode of address to be described? Is this critique spoken in the language of code as

actual functioning software or is it expressed in other terms? There is a need to explain

how critical software art relates to the layer of instrumental, non-reflective language that

provides the basis for its operations. There is a need to think through the engagement

with the material language of code. In this sense, the cultural critique of software cannot

be conceived apart from the apparently formalist option. The distinction between

formalist and cultural tendencies obscures this vital issue.

If this bifurcated notion of software art is ultimately disabling, working to impoverish

both formal experimentation and cultural critique, it is because it misconceives the field

in terms of a tension between contrasting aesthetic tendencies rather than in terms of a

more constitutive tension between art and the non-aesthetic, instrumental dimension of

software.

Software Becoming Art

The notion of software art appears at one level as a transgression of ordinary aesthetic

87

proprieties. In a traditional avant-garde spirit, it seems to unsettle the complacent

autonomy of art, insisting that art engage with a space of non-art – a realm of engineering

and technical implementation. Yet at another level it proceeds in an opposite fashion.

Rather than genuinely risking a relation to the alterity of another cultural and discursive

space, it conceives software in terms of art. It dialectically subsumes those aspects of

software that are aesthetically useful and digestible, while discarding everything else.

This is evident inasmuch as the specific characteristics of software art correspond to a

very conventional aesthetic scheme. It is worth briefly outlining the contours of this

scheme in terms of Kant’s classical model of aesthetics and fine art.

According to Kant (1980), aesthetics denotes a realm of non-instrumental engagement

with things. It is a sensuously enabled mode of reflective judgement that rises above the

dimension of sense to enter into dialogue with the a priori space of conceptual

understanding (Eagleton, 1990: 85; Kant, 1980: 484). The experience of beauty, for

instance, relates to the recognition of order in the symmetrical forms of nature – mineral

and organic forms that are not themselves conceptual but that nonetheless reveal a

systematic, formal logic (pattern, unity and harmony) – an order that is apprehended

through the senses but that instantly summons an awareness of the universal and the

metaphysical (Kant, 1980: 493). Fine art, as a specific experience of the beautiful,

manifests a purposiveness without purpose, a disinterested, non-utilitarian demonstration

of the felt rightness of the conceptual (Kant, 1980: 524-5). It strips real objects of their

ordinary reality, their contextual significance as objects that are practically desired,

manipulated and used. Art objects suspend the dimension of conventional instrumental

utility in order to attain a higher conceptual utility as signs of an ultimate reconciliation

of human faculties. Their lack of instrumental utility takes the form of an organic

finality, a dimension of formal coherence without goal. The production of art depends

upon genius; an ‘innate mental aptitude (ingenium) through which nature gives the rule to

art’ (Kant, 1980: 525). Unlike instrumental craft, which is the product of practical,

formulaic labour, fine art is conceived as a generative expression of the soul as a protean

‘second nature’ (Kant, 1980: 528). Kant’s aesthetic scheme is representative of a

88

classical Enlightenment conception of art as non-instrumental, final, reflective and the

product of genius.

Now, without trying to suggest that contemporary conceptions of software art are strictly-

speaking Kantian, there are curious affinities linked to how issues of instrumental

function, reflection and artistic subjectivity are conceived.

Instrumental Function

Software art characteristically resists the notion of software as a tool. The jury for the

2001 Berlin Transmediale.01 artistic software award suggest that ‘[e]very program that

pretends to be a tool disguises itself’. Here they are referring to the fiction of a passive

tool – of something that is altogether controlled by human beings and subservient to their

interests, but it spills over into a more general rejection of pragmatic, instrumental

software. There is a strong preference for work that undermines utility and suspends

ordinary functioning. Adrien Ward’s Signwave Auto-Illustrator (Ward, 2001) provides

the iconic example, although it is a work that represents, in my view, an ambivalent

relation to the instrumental. In its adherence to the interface conventions of commercial

creative software, Auto-Illustrator at once deconstructs and delights in the notion of

software as tool. While the deconstructive orientation is emphasized, the manner in

which the work draws inspiration from the conventional language of tool-based software

escapes explicit attention.

Software art’s suspicion of tools connects to the classical aesthetic bracketing of the

instrumental, although clearly the aim is less to determine a pure space of disinterested

perception than to critically respond to the dominant models of commercial application

software. Yet it seems to me that the rejection of the notion of the tool – as well as the

rejection of the tool’s effort to disguise itself – creates fundamental problems for software

art. Even if a piece of software is not ostensibly a tool, it must speak the language of

tools. It is devised as a system, an apparatus. It functions. As languages and discursive

forms, programming languages bear the necessary imprint of the industrial forces that

have shaped them. The concept of a tool is implicit within programming structure – in

the notion of an algorithm that processes data, an object that performs a specific

89

(encapsulated) task and a procedure that runs more or less efficiently. In bracketing all of

this, in trying to think algorithm and procedure beyond the instrumental space of tools

and tool functioning, software abandons a crucial point of aesthetic purchase. The goal in

my view is not to resist the notion of the tool, but to engage with issues of abstraction,

disguise and efficiency, to somehow re-imagine the aesthetic in an alien terrain.

There are already models from within software – works that may not be primarily

aesthetically constituted but that have aesthetic, poetic implications, that reveal the

potential for an instrumental imaginary. Just to briefly mention three: Ivan Sutherland’s

1962 Sketchpad, which was not only the first graphic drawing program but which, more

particularly, as Allen Kay argues (2003), re-invents drawing in terms of the conceptual

structures of object-oriented programming; Richard Stallman’s Emacs (1975) which is a

bizarre jalopy-style software, defiantly resisting task specialisation and ordinary

boundaries between work and play; and finally even the modern integrated development

environment, Eclipse (2004), which is utterly generically conceived – which can be

radically reconfigured to accomplish different programming tasks and which appears as a

kind of meta-tool, a tool for creating tools. For me these software tools are as much a

source of inspiration as is work that is specifically (safely, neatly, clearly) positioned as

software art.

Reflection

The primary motivation of software art is to encourage reflection upon underlying

programmatic software processes. This notion of reflection is hardly the affirmative,

grandly reconciling reflection of Kantian aesthetics – it is often, for instance, critical and

deconstructive, but it nonetheless privileges code that does more than simply operate –

that somehow finds the means to reflect upon its own operations. Without wishing to

altogether question this orientation towards reflection, it seems to me that the issue is

more complex. Programming entails relations that extend beyond the fantasy of visibility

and self-collected reflection.

 This is evident at the very outset of modern computer science in Alan Turing’s model of

computation (Turing, 1995; Feynman, 1996). If Turing chooses to compute, it is because

90

computation is mechanical, it proceeds stupidly step by step. Computer programs may

represent brilliant efforts of reflective analysis, abstraction and design, but program

operations at the atomic level of specific digital events are utterly simple and

unambiguous. Reflection constitutes a problem for underlying digital processes, a

quandary that suspends their functioning. It is worth examining the play of reflection and

machine unconsciousness in Turing’s famous ‘halting problem’. Turing reflects upon the

mechanism of computation, upon its procedural logic. He sets computation a reflective

trap. The universal machine is programmed to halt if it is stuck and proceed if it is not.

Then, in a crucial reflective step, Turing makes the computer process its own code. Now,

it seems, it must halt if it proceeds and proceed if it halts. Unable to decide whether to

proceed or to halt, the mechanism comes undone precisely through a motion of reflection.

The jury for the Transmediale.01 festival suggests that the fascination of computer

programming depends precisely upon code’s capacity to function, the passage it makes

from a reflective conceptual state to one of actual machine processing:

Perhaps the most fascinating aspect of computing is that code – whether displayed

as text or as binary numbers – can be machine executable, that an innocuous piece

of writing may upset, reprogram, crash the system. (Transmediale.01 Media Arts

festival jury, 2001)

Turing’s example suggests that this necessitates a relation of reflection to something

other than reflection – to a space of blind motion that functions only on condition that it

does not reflect. Programming demands a close engagement with this other space. It

opens up a vital relation to the blindness of machine processing. The aesthetics of code is

as much about the unseen, the hidden and the disguised as it is about the reflective and

the visible. In this context, strategies of abstraction and encapsulation are also relevant –

as indeed are all of the strategies that structure programming as a work of inscribing

layers and guises above an unreflective foundation. So while software art expresses a

fascination with the executable character of code, it withdraws from the thinking of this

space to the extent that it insists upon a purely reflective conception of software art.

91

Artistic Subjectivity

Software art associates the aesthetic character of code with a dimension of personal

inflection. Cramer and Gabriel argue that:

[C]oding is a highly personal activity. Code can be diaries, poetic, obscure, ironic

or disruptive, defunct or impossible, it can simulate and disguise, it has rhetoric

and style, it can be an attitude. (Cramer and Gabriel, 2001: 3)

This is hardly the concept of aesthetic genius (which is actually much more ambiguous,

which actually deeply problematizes issues of agency) but it places a similar emphasis

upon the expressive potential of code. Code that is impersonal and formulaic appears

less aesthetic. In my view, however, code is inevitably formulaic. There are all kinds of

standard idioms, patterns and stylistic conventions. It is less by resisting these and

affirming some notion of personal, differentiated expression that code becomes aesthetic,

than by pursuing the formulaic closely and intimately. Rather than asserting subjectivity,

it is a matter of finding it elsewhere, of re-inscribing it at a distance. Code is only

personally inflected within the texture and through the agency of impersonal formula.

There is a vital need then to consider the instrumental character of software beyond the

conventional framework of Enlightenment aesthetics. As Derrida (1976) argues, the tool

is never a mere subservient vessel but always appears as a force that intimately affects

and undermines the notion of human agency. Writing appears as an aid to human

memory but actually destabilizes human memory and renders it in other, alien terms. Re-

conceiving the instrumental character of the software tool depends upon considering the

nature of a tool more closely, rather than turning away with a sense of traditional

aesthetic disdain.

Heidegger – Technological Revealing

In his famous 1953 article, ‘On the Question Concerning Technology’, Heidegger begins

by suggesting that ‘the essence of technology is nothing technological’ (Heidegger, 1978:

287). He is determined to reinterpret technology, to discover within it another meaning.

Heidegger questions the common sense view of technology as a neutral means to an end

92

and as an expression of human agency. He describes this view as ‘the instrumental and

anthropological definition of technology’ (Heidegger, 1978: 288). This would seem to

represent a similar rejection of human instrumental agency that we find within software

art, yet the notion of the instrumental makes a strange return as the argument proceeds – a

return in which the notion of a subservient means is thought apart from the necessity of

original agency or determined end.

Re-examining the nature of technological making as traditionally conceived (in the

Aristotelian conception of techne (Aristotle, c. 350BC)), Heidegger finds that it involves

a motion of “bringing-forth” that is aligned with poesis (Heidegger, 1978: 293). It also

summons a more complex sense of causality which eludes the modern sense of means-

end rationality and engages with processes of revealing – the manifestation of truth

(Heidegger, 1978: 294). A classic instance is evident, perhaps, in Michelangelo’s

conception of uncovering figures in marble; he less makes the figure (ex nihilo) than

releases and reveals the inherent potential of the figure from within the marble. In this

sense the artist lacks absolute agency, appearing instead as a mechanism for an overall

process of revealing (he is caught up in the mystery of Being).

Heidegger argues that while this model appears applicable to traditional handicraft,

modern technology radically changes things. Rather than adapting to implicit nature –

tending it and gently bringing it forth – modern technology exploits materials; it extracts

from them and transforms them. Materials become bare functional resources that are

never revealed as such but that are instead stored up, ordered and operationalized

(Heidegger, 1978: 298). Traditional processes permit the object its distinct appearance,

autonomy and finality, whereas modern modes of technological manufacturing enable no

space of rest or of contemplative existence:

Unlocking, transforming, storing, distributing, and switching about are ways of

revealing. But the revealing never simply comes to an end. (Heidegger, 1978:

298)

93

This operational system affects not only natural materials and the technological devices

but also the human beings that ‘run’ them. All elements become regulated components

within an overall mechanical constellation; none of them can ever be revealed in

themselves – instead they constantly point elsewhere and only gain meaning in their

systematic (differential) functioning.

Surprisingly, rather than altogether rejecting this prospect of systemic displacement and

human alienation, Heidegger discovers within it a sense of strange hope. This hope is

linked precisely to the instrumental character of modern technology; specifically to the

ambiguous relation it opens up between revealing and hiding. Rather than directly, un-

problematically, displaying Being in a natural and organic fashion (as evident in the

model of traditional handicraft), modern technology shapes a blindness, a layering, a

system of guises. For Heidegger this has the potential to provide access to a deeper layer

of revealing – the truth, precisely, that truth can never appear as such, that it is inevitably

in disguise – dissembling and adopting the form of copy, metaphor and sign. Heidegger

argues that humanity ‘keeps watch the unconcealment – and with it, from the first, the

concealment – of all coming to being on this earth’ (Heidegger, 1978: 313). If ‘the

essence of technology is nothing technological’, it is because it is actually about the

ultimate mystery of being and revealing:

The question concerning technology is the question concerning the

constellation in which revealing and concealing, in which the coming to

presence of truth comes to pass. (Heidegger, 1978: 315)

If this alternative thinking of technology appears dangerous it is because it risks

becoming lost in the tissue of concealment – truth is no longer co-extensive with direct,

lucid appearance. It passes away from itself and beyond the control of self-collected,

critical, human consciousness. The anthropocentric dream of human control and mastery

is abandoned in order to conceive technology in radical instrumental terms as an opening

and a displacement. Hence, for Heidegger, the importance of art as both a species of

techne and as a means of maintaining a human, reflective element:

94

[E]ssential reflection on technology and decisive confrontation with it must

happen in a realm that is, on the one hand, akin to the essence of technology

and, on the other, fundamentally different from it. (Heidegger, 1978: 317)

However, art can only perform this task of maintaining reflection within the space of

semblance and loss if it takes technology seriously, if it ‘does not shut its eyes to the

constellation of truth concerning which we are questioning’ (Heidegger, 1978: 317). The

catch, however, is that this also necessitates a questioning of the nature of art as critique:

‘the more questioningly we ponder the essence of technology, the more mysterious the

essence of art becomes’ (Heidegger, 1978: 317). This mystery takes shape precisely as

the risking of critique – art itself appears as a passage away from truth as simple

revealing. This is not a consequence of its inevitable opposition to technology (the

conventional romantic aesthetic attitude that contrasts irrational, sensible-material art to

the rational abstraction of technology), but instead arises from a fundamental engagement

with the problem of technology. The mystery of art lies in its participation within the

problematic of the instrumental.

Heidegger’s conception of technology has clear relevance to the nature of software which

is characterized by an enframed writing, a motion of functioning without human agency

and by endless processes of structural hiding (abstraction and encapsulation). Art cannot

resist these processes by simply projecting a naïve opposite. There is instead a need to

insert itself within software, to partake of its processes, to follow its complex system of

layering and dissembling.

Plato – Inspiration and Mimesis

Heidegger’s perspective emerges as a creative response to a specifically modern concern,

yet there are also ancient models for this view. It is easy to imagine an ancient unity of

techne and poesis that is split apart within modernity, yet this sense of division is also

apparent within the ancient world. Plato, for instance, writing around the same time as

Aristotle, is adamant that techne and poesis are fundamentally opposed (Plato, c. 380

BC). Whereas Aristotle (1965), in his On the Art of Poetry, positions (dramatic) poeisis

95

as a domain of conceptually-guided skill, Plato, in his dialogue Ion (c. 380BC), casts

poesis as form of sympathetic magic, of intoxication. The discussion between Socrates

and the Homeric rhapsodist Ion sets out to establish that the latter rhapsodizes not

through the mechanism of clear aesthetic precepts and skills but through the agency of

divine inspiration:

For all good poets, epic as well as lyric, compose their beautiful poems not by

art, but because they are inspired and possessed. And as the Corybantian

revelers when they dance are not in their right mind, so the lyric poets are not

in their mind when they are composing their beautiful strains: but when falling

under the power of music and metre they are inspired and possessed. (Plato, c.

380 BC: 5)

For my purposes, what is interesting here is that inspiration renders the artist an

instrument. They are no longer in control, they can no longer entirely reflect upon, or

claim essential priority for, the processes in which they are involved. They are caught up

in operations that exceed them. Plato describes inspiration in terms in terms of the

metaphor of a magnet:

This stone not only attracts iron rings, but also imparts to them a similar power

of attracting other rings; and sometimes you may see a number of pieces of

iron and rings suspended from one another so as to form quite a long chain:

and all of them derive their powers of suspension from the original stone. In

like manner the Muse first of all inspires men herself; and from these inspired

persons a chain of other persons is suspended, who take the inspiration. (Plato,

c. 380 BC: 5)

The metaphor suggests a chain of inspiration that takes shape as a set of mediated

relations. The ‘original stone’ can not itself be seen – it passes away from itself in order

to manifest its attractive force. Each iron ring – Homer, the Homeric rhapsodist Ion and

the audience – is linked together instrumentally as an ordered sequence and as a chain of

unconscious attraction. However the chain also gives rise to apparitions, because

96

inspiration becomes manifest through appearances, through mimetic guises. If Plato

(1955) ultimately expels the poets from his ideal republic, it is not only because they

encourage dimensions of irrational and emotional excess but because they produce

beguiling appearances that are a ‘third remove’ (Plato, 1955: 425) from truth. Genuine

truth has its home in the sphere of abstract, mathematical form, whereas human beings

live in the world of appearances (dark and shadowy and yet visible), and artists create

appearances of appearances. The fundamental paradox is that inspiration has its basis in

the revelatory experience of music and metre (which traces intimate links to the realm of

ideal truth), but instead of producing truth it gives rise to falsehoods. Just like technology

(conceived in Heidegger’s terms) mimetic art renders revealing as concealing.

We find then that Plato’s rejection of the mechanism of art (techne) only enables its more

thorough grounding within art – not as conceptually guided, skill-based practice, but as

the instrumental character of techne which here informs the nature of poetic inspiration

and mimetic form; taking shape as the suspension of self-collected human agency and in

systems of dissembling that chart an undecidable relation between the revealing and

concealing of truth.

How can Plato’s scheme, in which the aesthetic and the instrumental discover a

surprising space of association, contribute to a re-evaluation of the status of the

instrumental within software art? The layers of abstraction that characterize code

operations are certainly not mimetic, but they obey the fundamental form of mimesis

inasmuch as they involve a motion away from self-present origin. Similarly, although

Plato’s conception of poetic intoxication may seem very distant from rational software

processes, the notion of involuntary poesis – in its automatism and blind pull – summons

a sense of Turing’s concern with the universal machine’s dumb mechanical functioning.

Within this context it is worth recalling that Adorno and Horkheimer conceive

instrumental rationality precisely in terms of a limit point of reason in which rationality

and irrationality coincide (Adorno and Horkheimer, 2000: 172). If instrumental

rationality reveals an irrational dimension, it is not only in terms of the division it opens

up between episteme (knowledge of invariable principles) and phronesis (morally guided

97

practical action), but also in terms of its suspension of human agency, its orientation

towards an automatism that inevitably comes to resemble intoxication.

Cropper_Propper_Gridder

Overall then the genuine aesthetic potential of software lies in engaging with everything

within software that seems most intrinsically inimical to the aesthetic – dimensions of

instrumental function, non-reflective process and formulaic expression. Rather than

struggling to find means of lifting up software to the status of art, there is a need to delve

into the instrumental character of software, to genuinely engage with this space of risk

and aesthetic alienation. This is what Cropper_Propper_Gridder attempts. The work

provides an example of an effort to conceive the relation to the instrumental differently.

If it does not take adequate shape as either a piece of software art or genuinely useful

tool, then it is because it is concerned to explore a space of tension and awkward

possibility.

The name is enough to suggest a dimension of awkwardness. Cropper_Propper_Gridder

refers to three separate pieces of software that together form an apparatus for

decomposing video and playing it back in discrete, grid-based portions. When it was

exhibited, however, the work had a different name. It was called Ice Time, which related

to a specific instance of the work which focused on video sequences from the Ross Sea

region in the Antarctic. This suggests another dimension of awkwardness; the

awkwardness of the distinction between the visible interface with its specific instances

and the generic character of the work as an engine, as a mechanism of decomposition,

choreography and display. Which of these demands attention? Which of these has a

properly aesthetic character? Or is it both? And if it is both then how are they to appear

simultaneously? What would this mean? The work raises these kinds of awkward

questions. Prior to considering its uncertain status as a piece of software art, there is a

need to provide more detail about the work itself, considering the underlying concept, the

technical system and the exhibition context.

Concept

The project had its basis in the philosopher Henri Bergson’s (1911) condemnation of the

98

‘cinematographic’ representation of time (which I mentioned in chapter 3). According to

Bergson, time as duration represents a qualitatively whole motion that cannot be

subdivided without fundamentally altering its character:

All is obscure, all is contradictory when we try, with states, to build up a

transition. (Bergson, 1911: 313)

Film, as a technology for cutting up time into frames and reassembling it for illusory

temporal display, appears as a metaphor for the modern alienation from the genuine

experience of duration. In response to this, I wondered, perversely, whether time was not

better experienced through a mechanism; not as a predictable linear sequence, but as a

work of setting time astray, of manufacturing, emphasizing and exacerbating its

obscurity. I was thinking of projectors that run too slowly, in which the individual

frames are visible, in which a sense of time emerges precisely through the disengagement

of actual continuous time, in which time is manifest not as a single flow but as a set of

flickering instants which serve both as an alienated reminder of some other time and as

an immediate, yet dislocated, perception of current duration.

This interest, this thematic space, is clearly not unique. It charts relations to long-

standing aesthetic concerns within avant-garde film and video art, from the exploration of

aspects of temporal sequence in Dziga Vertov’s 1929 Man with a Movie Camera, to

Chris Marker’s concern with the invisible time of the black film leader in Sans Soleil

(1983), to the Australian artists, Rodney Glick and Lynette Voevodin’s display of

columns of hours from a single day in 24Hr Panoramas (1999-2006). It also connects to

the tradition of experimental new media which explores issues of time in terms of the re-

combinatory possibilities of computation (Jaschko, 2003). Some influential works

include Joachim Sauter’s and Dirk Lusebruk’s Invisible Shape of Things Past (1995)

which reconstitutes time slices as peculiarly non-temporal, sculptural entities, Martin

Reinhart’s and Virgil Widrich’s tx-transform (1992-2002) which swaps the axes of

temporal and spatial representation, and most relevantly Camille Utterbach Liquid Time

(2001-2) which enables portions of the video frame to play at different speeds and in

different directions. My work explores similar possibilities. It decomposes the video

99

frame into rows and columns of independently playing image sequences – in an effort to

stage both the deconstruction of ordinary time and a summoning of temporal alterity.

It is at this point that the conventional aesthetic idea necessarily engages with a technical

imaginary. There is a need to consider how the various aspects of the system can be

implemented. There is a need to devise systems, tools, engines. There is a temptation to

disregard this as a work of subsidiary technical implementation, but for me it indicates

the vital process in which the aesthetic concept takes practical and poetic shape as an

instrumental apparatus.

Fig. 17: Brogan Bunt, Cropper_Propper_Gridder (2005) design concept

Technical System

Above is a diagram of the display system:

The screen is composed of any number of squares which may or may not be arranged in a

grid based manner. Each square is composed of a set of sequences of still images. Each

sequence may be played independently and in various ways (in terms of speed, direction,

etc.). Sequences may have associated sound files which may loop or play a specific

number of times. Finally aspects of playback may be choreographed in advance or

enable live interactive control.

100

The basic technical challenge involved finding means to decompose a video sequence

into a set of independently playing image sections. The neatest and most logical

approach was to employ a single video file and dynamically decompose and reassemble

frames from the cube of spatio-temporal data. For long sequences, however, this was

likely to demand retaining a very large number of frames within RAM and a constant

process of multi-frame analysis to constitute any specific display frame. This is probably

technically feasible but seemed beyond my means. Another obvious approach was to cut

up the video in advance and play back any number of independent video streams. This

proved unworkable due to the considerable overhead that each stream of video imposed

on the overall system. It was not possible to play back more than a couple of video files

at once. My only other option was entirely simple, even anachronistic. It involved

conceiving the video sequences as game-style sprites. Video sequences were

decomposed into sets of video stills and then decomposed again in to sets of cropped

images. Represented as sprite arrays, these sets of cropped images could be played back

in conventional sequential order, randomly or in any number of specific algorithmic

ways. This was the approach I adopted and miraculously it seemed to work even for a

finely articulated grid (60 or so sequences running simultaneously), but it had one major

drawback. Instead of a single video file or a relatively small number of cropped video

files, I had multiple directories filled with innumerable tiny image files. In this sense, it

was a plainly awkward and inefficient solution. Moreover, in its literal complexity, in its

fragmentation of data, it opened up the necessity for a set of specific tools to handle

aspects of decomposition, choreography and display.

Cropper

Cropper is a small and unassuming utility program that handles the process of first

cutting up sequences of video stills into rows and columns of cropped images and then

saving them within an appropriate directory structure. It obscures the major part of its

underlying functioning, merely displaying dynamic information concerning the

percentage of images processed.

101

Fig. 18: Brogan Bunt, Cropper (2005) interface

Propper

Propper is a much more ambitious program. The role of this tool is to produce the

underlying score that choreographs aspects of display. It builds XML (Extensible

Markup Language) description files that the display engine, Gridder, reads in order to

know what media to load when and where. XML makes dimensions of logical structure

visible, legible and easily accessible (within text editors, browsers and so on); however, it

can be slow to prepare manually. Propper provides a rapid, visual means of writing these

files.

102

.

Fig. 19: Brogan Bunt, Propper (2005) interface

Gridder

Gridder is the display engine. A dialogue opens requesting that the user point to a

relevant project directory. Gridder reads the project xml description file and commences

media display. Additionally, the software enables interactive control of the playback

parameters of image sections. Gridder displays in a screen window with a standard title

bar. This is intended to remind the viewer/user that the work is a piece of software, not a

piece of linear, pre-constructed video.

103

Fig. 20: Brogan Bunt, Gridder (2005) interface

Here is a screen shot without the title bar to provide a sense of the visible output of a

more complex piece (a 9X3 grid with multiple ‘video’ sequences):

Fig. 21: Brogan Bunt, Gridder (2005), Ice Time exhibition (2005)

Exhibition

The screen shot above (Figure 21) is from the Ice Time exhibition. The emphasis was

upon the display of fragmented video sequences of the Antarctic. The choice of footage

from the Antarctic was deliberate. Antarctica is generally perceived as a space of pure

glacial duration, yet we have recently become aware of its extreme temporal fragility; the

Antarctic is entering another time – a time of division, of breaking up, even of imminent

104

catastrophe. Without pursuing this point in an explicit political manner, the conjunction

of the software apparatus (as a work of temporal decomposition and the flickering re-

summoning of time) and the samples of an entirely fragile realm of duration suggests a

dimension of temporal uncertainty that has political implications.

Leaving aside the specific thematic issues addressed in this exhibition, the issue that

mainly concerned me was the near invisibility of the Cropper/Cropper/Gridder apparatus

in the exhibition display. Although I had spent close to two months producing the

software and perceived it as the vital context in which the aesthetic concept took generic

shape, there seemed no satisfactory way of acknowledging the apparatus, of making it

appear aesthetically. I was very aware that the project may appear as a work of video

compositing rather than software art. It is this sense of uncertainty (and frustration)

concerning how to adequately exhibit the work that has prompted this specific reflection

on the instrumental.

Software Art?

As I have suggested, the vital problem that the project raises for me is in identifying the

properly aesthetic character of the work. A conventional view would distinguish between

the aesthetically significant exhibited work and the aesthetically inconsequential

background technical infrastructure. The contemporary notion of software art seems to

provide a corrective to this view but ends up insisting upon a non-instrumental model of

software as a form of abstract formal enquiry and/or self-reflexive software critique that

has the unfortunate consequence, once again, of positioning the instrumental component

of Cropper_Propper_Gridder as work of mere technical implementation. At the same

time the software art status of the exhibited interface is questionable because it is less

about reflectively revealing the dimension of code than about setting code into relation

with the particularity of specific temporal samples. On what basis then do I regard the

overall project as a work of software art?

The project represents a meditation on issues of the coded, discontinuous character of

represented time that is conducted through the medium – the linguistic and discursive

forms – of software. In this sense, it represents an example of what Fuller describes as

105

‘speculative software’ (Fuller, 2003: 29). Although the boundaries blur, Fuller

distinguishes speculative software from ‘critical software’ (Fuller, 2003: 22) in that the

former is oriented less towards deconstruction than making; it engages with ‘the havoc of

invention’ (Fuller, 2003: 32). Cropper/Cropper/Gridder may be regarded as a

speculative apparatus; it takes shape as a perverse media player, one in which the

dimension of time is disarticulated and re-composed.

The work gains aesthetic coherence as an overall system that includes an element of

generic operation and specific instantiation. In terms of the generic character of the

work, the underlying poetic idea is realized as a linked system of functional tool-based

operations which together form an abstract machine, an engine. Cropper represents the

motion of decomposition, Propper the work of reassembling, and Gridder the rendering

of an unnatural spatio-temporal logic in actual time. In its operation, the engine

inevitably structures a moment of instantiation. The aesthetic dimension of the latter

emerges in the friction between coded time and the particularity of sampled actual time.

Without an awareness of the background software, this sense of friction is lost. The

dimensions of interface and implementation are integrally aesthetically related.

The instrumental orientation represents an important aesthetic choice. The strangeness

and technically anachronistic character of the project is heightened precisely by pursuing

it through the agency of the instrumental, by discovering means to realize a perverse,

absurd, idiosyncratic idea as efficiently as possible. Accordingly, at a stylistic level the

software resists adopting a conventional aesthetic guise; it is deliberately blankly

ordinary. The Java Swing style interface elements – menus, tabbed windows,

hierarchical lists, radio buttons, etc. – interested me particularly in their anonymity and

their embeddedness in the logic of instrumental software production and use. If the

explicit conceptual theme is the alienation of time via mechanical division then the

choice of a blank instrumental style works in my view to heighten the sense of alienation.

Of course, the problem is that none of this was seen by the exhibition audience. This is

written then as a critique of the work’s original mode of exhibition. The work needed to

demonstrate both the engine and the interface in order to properly address the conceptual

106

them of the coded representation of time, as well as the equally important theme of the

relation between an instrumental apparatus and an aesthetic concept.

Conclusion

My overall argument is that rather than positioning the instrumental, tool-based character

of software as some grim fact that must be rigorously resisted, there is vital need to work

through the instrumental, to explore its possibilities. This entails a risk – the risk of

facilitating software functioning, of engaging with its work of abstraction, encapsulation

and disguise. It projects a space of uncertain creation that cannot altogether shake of a

relation to the blindness of mechanical process, that must find means to reflect amidst a

work of operational making. The clear difficulty is in finding adequate means to

conceive a work of critical reflection within the texture of instrumental relations when

the self-consciousness of critical awareness is precisely what is put at risk. In my view

there is no easy solution to this dilemma. Instead there is a constant work of negotiation

– of engagement and distanciation with whatever it is that an instrumental device and an

aesthetic work represents. This would seem to demand a re-examination of the relation

between ‘software culturalism’ and ‘software formalism’ (Cramer, 2002:10). It may be

that it is precisely at the level of form (regarded as a material discursive fact and

experimental space) that the most profoundly cultural questions are raised. Of course,

how these questions are to be articulated – how they are to take constitutive shape as

processes, engines and interfaces – remains an open question.

107

Chapter 7: Openings

Introduction

The third and final dilemma of software art that I mentioned at the end of chapter 4 is that

of recursion. This is once again a problem of reflection. Software, it is argued, can only

aspire to art if it is reflective. Faced with conventional software’s tendency to hide and

its insistent instrumental orientation, software art attains properly aesthetic shape in its

work of reflection. The revelation of aspects of code process and the critique of the

culture of software becomes the dominant thematic concern. As a result, software art is

caught within a recursive cycle. It is doomed to endlessly reflect upon its own formal

and cultural conditions. To pursue any other concern appears as an affirmation of the

invisibility of instrumental functioning.

On this basis, Johansson argues that software art is bound to a mise-en-abyme aesthetics

(Johansson, 2004: 151) that leaves little room for aesthetic opening and Cramer (2002)

writes of the apparent lack of future for both formalist and culturalist tendencies:

If Software Art would be reduced to only the first [formalism], one would risk

ending up with a neo-classical understanding of software art as beautiful and

elegant code along the lines of Knuth and Levy. Reduced on the other hand to

only the cultural aspect, Software Art could end up being a critical footnote to

Microsoft desktop computing, potentially overlooking its speculative potential at

formal experimentation. (Cramer, 2002, 10)

I have questioned the value of conceiving software art entirely in terms of an opposition

between formal and cultural orientations. Apart from obscuring a more significant

dialogue between instrumental and aesthetic discourse, it also renders formalism and

culturalism as caricatures. A concern with form, for instance, need not entail a lack of

concern with anything else. It can encompass interests that extend beyond the self-

collections of form – that seek out the non-identical precisely through the paradoxical

agency of form. This is evident, for example, in the tradition of Minimal Art, in which an

extreme awareness of form and an extreme formal reduction are oriented towards the

108

staging of aporia rather than the formal integrity of a composition. Similarly, culturalism

need not take exclusive shape as a concern with the culture of software. Instead of

single-mindedly looping back on itself, software may engage with culture in all manner

of different ways. I think of the example of the radical documentary tradition –

filmmakers such as Chris Marker, Jean Rouch and Georges Franju – who manage to

reflect upon the epistemological and aesthetic conditions of documentary film at the same

time as exploring other issues. Their work of reflection avoids disabling solipsism and

becomes integral to pursuing a broader set of cultural concerns.

This chapter aims then to resist this sense of reflective closure – to suggest possibilities of

opening. In the previous chapter I discussed a specific, and particularly important, form

of opening – the relation to the instrumental. Rather than possessing an entirely

internally coherent identity, software art engages with a space of instrumental functioning

that both shapes its interior dynamic and exceeds it. Here I wish to suggest three

additional forms of opening: the first hinges on questioning software art’s self-enclosed

generic integrity, suggesting instead a permeable relation to a wider universe of aesthetic

practice; the second takes shape in terms of software art’s potential to engage with the

alterity of the real; and the third concerns software art’s relation to the aporetic opacity of

finite computational processes. This chapter considers each of these forms of opening in

terms of my own work. My argument is that while maintaining a reflective aspect, these

openings signal the limits of conceiving reflection as an autonomous, constitutive,

aesthetic ground. Rather than a pure space of self-present critical-aesthetic thought,

reflective software art practice demands a thinking of dimensions of both exterior and

interior non-identity.

Permeable Relations

Despite its technological specificity – the specificity, for instance, of its executable

framework – software is not aesthetically isolated. Even were it to hope that it could

endlessly reflect on its own processes, it would discover traces of other traditions and

genres. This is hardly an original observation. Cramer (2005) does an excellent job of

describing the rich cultural heritage that informs software art practice – from medieval

rhetoric to OuLiPo poetic constraints and the language games of Conceptual Art. In a

109

more wayward fashion, Fuller traces links to the deconstructive architectural practice of

Gordon Matta-Clark (Fuller, 2003: 39-49) and obscure disciplines such as Nomography

(‘This lost art is essentially that of producing gridded visual diagrams showing the results

of what would otherwise be mental calculations’ (Fuller, 2005: 161)).

While the permeable character of the genre is emphasized, specific sets of association

have been avoided. I am thinking particularly of the relation to traditional ‘mechanically

reproducible’ media such as film and photography. It seems that these are too obviously

material, too apparently passive and too clearly tied to dimension of sensible perception

to adequately engage with software art’s constitutive abstraction and executable nature.

While Manovich (2001), Geoffrey Batchen (2006: 27-44) and others have traced all kinds

of links between traditional media and computation, these have occurred within the

context of theorizing new media rather than software art. As we have seen, the

fundamental effort to distinguish the specific character of software art depends upon

bracketing new media, upon presenting new media as a kind of blindness to underlying

code processes. This seems very unfortunate. Certainly my own software art practice is

vitally constituted by a dialogue with aspects of traditional media. There is a tendency to

associate the latter with a linearity that is inevitably opposed to the re-combinatory

spatiality of software, yet this is to ignore strands of traditional media practice that

anticipate the conceptual patterns of software. Consider, for example, the formal device

of film montage, which in Eisenstein’s (1986: 181-183) classical conception is not about

tying aspects of time and space together into a seamless and coherent narrative whole, but

about placing paradigmatic elements side by side – suggesting something new in their

friction, in their charged juxtaposition. Even a formal device such as looping repetition,

which seems so intimately enmeshed in the language of computation, is anticipated by

traditional media. I can remember spending many (highly aesthetically derivative) hours

working with audio tape loops and producing scratch-style video in the early 1980s. In

this sense, software programming represents another and more dedicated means of

exploring themes of re-combinatory structure and iterative pattern that are co-extensive

with strands of experimental media production.

110

A number of my software art projects are fundamentally concerned with the relation to

traditional media. As I mentioned in the previous chapter, Cropper_Propper_Gridder is

an alternative media player, reconceptualising the representation of filmic time in terms

of the possibilities of computation. Halfeti – Only Fish Shall Visit (2001) connects a

concern with code to the investigation of real social space. It explores the potential to

develop links to film and photographic documentary traditions. It is worth examining the

latter’s relation to software art.

Fig. 22: Brogan Bunt, Halfeti – Only Fish Shall Visit (2001)

Halfeti – Only Fish Shall Visit is an interactive documentary focusing on a small Turkish

town in the months just prior to its flooding by the waters of a large hydro-electrical

project (the Birecik dam just north of the Syrian border on the Euphrates River). At a

conceptual level, the work explores relations between the formal articulation of space

found within the adventure game and the cultural concerns and representational aesthetics

of the experimental documentary tradition. The work establishes a spatial-navigable

interface to a large set of documentary data – several thousand photographic images, a

large number of ambient audio files and close to an hour of video (incorporating

111

interviews and observational footage). The user gains the sense of ‘wandering’ about the

town, following lanes and pathways, entering open doors, and here and there coming

across people who explain aspects of their lives and their responses to an uncertain

future.

Described in these terms, the work may seem to bear very little relation to the field of

software art. The emphasis on interaction, display and media instantly suggests a work

that is insufficiently self-reflectively code focused. Yet, alongside its documentary focus,

Halfeti – Only Fish Shall Visit is very much concerned with code. Indeed it explicitly

aims to re-think the documentary genre in terms of the possibilities of code. One of the

specific challenges of the work was to discover an appropriate means to represent the

complexity of a real social space. I had previously produced simple navigable games in

which space was represented as a grid and movement from one place to another was

calculated mathematically. But the winding, irregular space of Halfeti demanded other

strategies. There was a need to develop an abstract data structure that could somehow

encompass complexity within a simple hierarchical framework. While the work makes

no effort to literally display this data structure and indeed deliberately disguises it in the

interactive interface, the work is reflective in another sense. A major aim was to qualify

and unsettle the sense of immersive engagement that typical games establish. The user

moves between static images, hears looping ambient sounds and encounters sudden,

montage-like transitions from morning to afternoon, day to night, sunshine to snow. In

this manner there is an explicit acknowledgement that the work is a coded mechanism

that summons the past not in the guise of a fictional, available present but as a space of

incomplete recollection and loss. Roland Barthes’ (1981) account of photography in

Camera Lucida provides some inspiration for this approach. Barthes represents

photography as a wound that summons and manifests the intractable otherness of past

events (Barthes, 1981: 77). I was attempting something similar in Halfeti – Only Fish

Shall Visit – not simply at the level of individual images but through the fragile artifice of

the navigational engine, which suggest less immediacy than the inevitably flawed

retracing of steps within mechanical memory.

112

In this respect, Halfeti – Only Fish Shall Visit shapes a process of reflection which

engages with the paradoxical character of traditional media; the curious combination of

intimacy and distance that photography, for instance, projects. This motion of reflection,

however, is not properly manifest at the level of source code (which can only appear

opaque and mystifying to non-programmers) but functions instead at the level of the

sensible interface – explicitly teasing out the friction between an artificial apparatus and

the texture of the real. Veering from the standard conception of software art, the work

resists an autonomous reflection on underlying software processes and instead posits one

that is enmeshed with issues of representation. This dialogue with traditional media

represents less a failure to properly conceive the aesthetic possibility of software, than an

effort to genuinely think its permeable discursive character – its intrinsic dimension of

opening.

Mechanism and Alterity

If traditional media focuses on issues of representation, describing a relation to the world

and a space of encounter, computation typically suggests something different. It is about

abstracting rules and conjuring simulations. Rather than the indexical trace, there is the

numerical sample and the algorithmically constituted semblance. In this sense,

computation less represents the world than abandons it and recreates it elsewhere.

Consequently, it appears unaffected by the longing that Barthes describes – the endless

play of summoning and deferral that characterizes traditional media. Instead of exterior

relations, computation establishes a space of finite autonomy and self-functioning. Yet

this can be interpreted differently. As I suggested in relation to Halfeti – Only Fish Shall

Visit, an engine need not only remain focused on its own operations. It can become a

means, paradoxically, of enabling a relation to the alterity of the real. Its motion of

apparent turning away can enable a strange return.

In his discussion of Henri Bergson’s notion of ‘cinematographic time’ (Bergson, 1911:

306) Deleuze describes the specific novelty of film representation: movement is no

longer ‘recomposed from formal transcendental elements (poses), but from immanent

material elements (sections)’ (Deleuze, 1986: 4). Instead of human vision and deliberate

framing and composition, the emphasis shifts to the mechanical sampling of instants of

113

time. The choice of instant is motivated by the logic of the camera apparatus rather than

by any specific conscious representational agenda. In this sense, Bergson regards the

film image as having an arbitrary temporal aspect; it is an ‘any-instant-whatever’

(Deleuze, 1986: 6). Precisely by suspending a level of human decision-making and

intervention, cinema discovers a means to access something beyond the a priori

conception of time; to figure time in its alien, material aspect. Film appears then as a

mechanism of abstraction and division which enables paradoxical access to an ordinarily

inaccessible dimension of sovereign particularity. In this manner, Bergson and Deleuze

associate the specific representational power of film with features that anticipate core

aspects of computation (automation and sampling). My interest here, however, is less in

re-considering the nature of traditional media in terms of computation, than in

recognizing that computation, and software art specifically, can also engage with a

representational imaginary. My aim is to consider how the thinking of code shaped my

processes of documentary production in Halfeti – Only Fish Shall Visit and provided a

means of engaging with the specific texture of a historical place, but it may be worth

considering another relevant example first.

The field of ‘psychogeography’, which draws on the concept of the flaneur and the

derive (drift), is associated with Situationism and Fluxus. It is a mode of experimental

practice that aims to encourage an open discovery of urban space, a re-interpretation of

space in non-habitual and non-instrumental terms. Whereas this may have initially

summoned a thinking of highly subjective, idiosyncratic forms of wandering, more

recently there has been an emphasis on ‘algorithmic psychogeography’ (Crystalpunk,

n.d.). Practitioners follow simple algorithms such as ‘second right, second right, first left,

repeat’ (Crystalpunk, n.d.). Rather than remaining stuck in an abstract geometrical rut,

the combination of a mechanical method and the complexity of real urban space opens up

the potential for spatial discovery.

While Halfeti – Only Fish Shall Visit was much more directed towards evoking elements

of spatial continuity, a similar friction between the demands of coded system and actual

space is evident. If the normal photographic strategy is to frame an image to make a

specific conceptual or aesthetic point, here my approach was circumscribed by the need

114

to record logical views that made sense within the overall spatial-interactive framework.

Over a period of a few weeks, I followed a network of paths that led out from the center

of the town, at regular intervals recording images forward, back, left and right. As a

result, the town is documented in a curious semi-automatic fashion. I captured views that

nobody else would bother to photograph – a faint path, a close-up of a wall, a dark room,

half a tree. These banal, uninteresting, particular images have a positive value for me.

They are the product of a process of spatial discovery that combines elements of

schematic necessity and slight aesthetic mediation. They chart an association between

hierarchical order and wayward wandering and engender a curious tension between the

abstract and the particular. Abstraction becomes a means of staging an opening, of

establishing relations to the alterity of the real.

Fig. 23: Brogan Bunt, Halfeti – Only Fish Shall Visit (2001)

Finitude and Non-Identity

It is not only by looking outside code that openings are discovered. They also appear

within code, within the very motion of finitude that appears to constitute a stable basis for

software art’s reflective self-identity. Here it is less a matter of pursuing algorithms that

115

generate the semblance and underlying structure of organic complexity than of focusing

upon basely mechanical operations. Programming shapes a relation to the machine that

constantly hits up against the mystery of execution, of a motion of becoming that is

manifest but not reflective.

This is a possibility that I explore in Hotel (2002). Hotel is an ironic generative game

space. Instead of shaping an endless world of artificial wonder, it renders space explicitly

Lego-like and repetitive. Hotel represents a response to Halfeti – Only Fish Shall Visit.

It withdraws from the picturesque particularity of a real social place to explore a space of

total artifice (the images are not photographs but renderings of an artificial 3D world).

Instead of a pre-determined data structure representing every aspect of space, it begins

with a void and a set of combinatory spatial elements. The space is built up in a dynamic

random manner as users wander about. Once an option is selected, however, it is locked

in place (hence users can always retrace their steps to the notional origin). Crucially

then, rather than an overall map, the space is represented as a fragile and abstract tissue of

associations between one spatial node and another (a dynamic linked list rather than an

exhaustive hierarchical array).

Fig. 24: Brogan Bunt, Hotel (2002) Fig. 25: Brogan Bunt, Hotel (2002) spatial

elements

Users find themselves stuck in a hotel corridor with no other option than to wander about.

They can wander as far as they like but only ever discover the same kinds of corridors,

lifts and vestibules. If they do manage to find their way into a secret room which

provides a kind of primal (very conventionally surreal) mythological scene, then they are

116

straight away transported back to the starting moment and an even clearer recognition of

the recursive, cyclical nature of the space. To relieve the tedium, the hotel corridors

contain distractions and strange clues which point to the secret room and aspects of the

underlying mythological narrative. It may be worth briefly describing this narrative

because it is specifically concerned with issues of finitude and opening.

Fig. 26: Brogan Bunt, Hotel (2002)

Fig. 27: Brogan Bunt, Hotel (2002)

117

The hotel appears as a space of order and light. It appears as the product of rational

consciousness. Here and there, in images on walls, in voices associated with particular

room and objects, there is the sense of some human architect. It appears visibly as a

detached head. This head imagines that it is responsible for this space, that it has made it

and manages it. Yet despite its brightness, there are elements that suggest that something

is amiss. Apart from the oddness of the spatial repetition, there are inexplicable pictures,

bizarre intercoms and televisions, and alcoves containing chromed body parts, sea

creatures and household utensils. Here and there, as well, weird fish swim along the

corridors. The secret room (hidden in a keyhole) provides an alternative account of this

place. Rather than the product of reason, it is a bubble produced from the mouth of a

fish. It is the product of darkness and chaos and the human head, endlessly dreaming,

only imagines its constitutive power. This is intended as a metaphor for the apparent

closure of computational systems, which is always precarious and, in its most

fundamental processes, reveals traces of non-identity that elude self-collected

consciousness.

My aim in this project was to ironically reflect on the closure of the digital, yet at the

same time, strangely and unexpectedly, it came to reveal other possibilities. Abject

processes of looping, repetition and random recombination engaged with the curiosity of

mechanical manifestation. The system became strange in its operation, in its play.

Something as simple as the random choice of one of four rooms, one of seven sound files

or one of twelve video files suggested a dimension of non-identity within digital

processes themselves. This can be linked to Nietzsche’s notion of the ‘eternal return’, in

which the metaphor of the dice throw suggests a relation between chance and necessity

and in which finitude becomes the basis for a thinking of the openness of becoming.

Nietzsche describes the motion of the dice in terms of ‘dynamic quanta, in a relation of

tension to all other quanta’ (Nietzsche, 1968: 339). Software art can choreograph forces

and set them at play, but the actual motion of execution constitutes a domain of

estrangement and opening.

It is not as though this mode of opening ever appears sufficient. Simple random

operations often appear as a cliché, yet at the same time, despite their over-use, they

118

retain a curious sense of wonder which is precisely linked to a non-reflective dimension

of performance. They engage the creative capacity of the machine, which is far less

about staging generative complexity than manifesting the most basic decisions.

Conclusion

These three forms of opening shape an important field of magnetic attraction within my

software art practice. At times I pursue openings in the relation to traditional media, at

times in relation to the alterity of the real, and at other times within the non-identity of

programmatic processes. The various poles of attraction can both stray apart and

coincide. I would like to conclude by mentioning two recent works that pursue radically

different directions.

Walk

Fig. 28: Brogan Bunt, Walk (2006)

Walk is a perverse work that draws the field of psychogeography back within

computation. Algorithms geared to the discovery of real space, now return to code and

flicker about on a strictly-defined grid. A set of walk objects follow mathematically

determined paths across the grid. In standard game style, if they encounter an edge then

space wraps to the opposite side of the grid. If the objects meet on the same grid square

119

while making a navigational decision then they are randomly allocated new colours and

algorithms. This project represents less a withdrawal from the real than an attempt to

think it askance, to transpose it back within abstraction. At one level, it is a parody of

human psychogeographical motion. At another level, it is a work of visualization,

enabling code to become metaphorical and thus be seen. At another level again, it

engages a play of finite wonder – it is fascinating (for me) as a repetitive and yet

inexplicable space of manifestation.

Paphos

Fig. 29: Brogan Bunt, Paphos (2006)

Another recent work follows an almost opposite trajectory. Paphos is a piece of

documentary video art, exploring moments at the margins of an Australian archaeological

dig in Paphos, Cyprus. Despite its apparent distance from software art, the work – like

Halfeti – Only Fish Shall Visit – conceives documentary in terms of the thinking of code.

The process of recording followed a roughly determined set of constraints. Each

sequence is about one minute long and the camera remains motionless throughout. The

sequences represent samples of Paphos time. I determine the framing but cannot predict

what will happen in front of the camera during the minute of recording. Individual

samples are strung together into a vague and inconsistent temporal sequence

120

(representing a gradual shift from morning to night), but the collection of samples are

essentially constituted as a paradigmatic set, representing mythological, contemporary,

iconic and interstitial aspects of Paphos.

These projects indicate that software art appears to me not as an autonomous space but as

a motion back and forth between code and other media, code and the world. It describes

dynamic trajectories and systems that inevitably inscribe relations beyond the fantasy of

closure.

121

Chapter 8: Conclusion

This dissertation has conceived software art as a space of tension which mediates new

relations between machine and human, instrumental and aesthetic and abstract and

particular. I have argued that these oppositions have both formal-aesthetic and cultural-

institutional implications. A close concern with the language of code entails engagement

not only with a formal linguistic and conceptual space but also with a broader social

space. Software art cannot escape its relation to the more general culture of software –

the sphere of industrial making and instrumental functioning which provides a vital

ground and point of reference for contemporary experimental practice. Rather than

shying away from these relations and withdrawing into the safety of traditional

conceptions of the aesthetic, software art does much better to acknowledge and pursue its

genuine space of risk.

Engaging with Code

I have considered the notions of software and software programming. I have traced the

historical emergence of software art and have examined specific dilemmas that confront

the genre in terms of issues that arise within my own work. I have not, however, offered

a clear alternative definition of software art practice. Pressed on this issue, I would argue

that software art represents a close engagement with the language and discourse of

software production. It emerges through a work of coding, through an imaginative

relation to the field of computer programming. This takes characteristic form in work

that is literally coded and that bears a fundamental and intimate concern with the field of

machine functioning, but it can take other forms as well. Manovich speaks of processes

of ‘transcoding’, in which the forms of code come to shape the ‘cultural layer’

(Manovich, 2001: 46) and Cramer argues that ‘software is no longer just machine

algorithms, but something that includes the interaction, or, cultural appropriation through

users’ (Cramer, 2005: 122). For me, a work such as Paphos, which is not literally a piece

of software, is shaped nonetheless by a coding imaginary. While only loosely a piece of

software art, it highlights a wider space of conceptual-aesthetic possibility and suggests

an inevitable dialogue with other modes of creative practice.

122

Some critics, however, advocate a more restricted conception of software art. Despite the

inclusive rhetoric of the early transmediale and Read_Me festivals, critics such as Inke

Arns (2004) associate software art exclusively with practices of cultural critique and

bracket formalist genres such as generative art due to their apparent lack of critical self-

reflexivity. Arns argues that whereas generative art focuses on the performance and

visible results of generative (artificial life) algorithms, software art focuses upon

exposing underlying machinations (Arns, 2004: 183). My problem with this restricted

definition is that it not only oversimplifies the field of generative art – which includes

practitioners such as Paul Brown whose work demonstrates, as Mitchell Whitelaw

argues, an explicit concern with ‘purely formal structures, templates for computation,

patterns of rules’ and an ‘unhinging of figure and mechanism’ (Whitelaw, 2004: 147) –

but, more significantly, imagines that the engagement with code can constitute a pure

moment of critical revelation. I have argued, on the contrary, that programming

necessarily entails processes of hiding – that its operations elude and undermine simple

visibility. Rather than literally exposing code, software art inevitably shapes metaphors

and disguises, abstractions and interfaces. Indeed, as I suggested in Chapter 4, many

pieces of formalist software art – and generative software art specifically – are precisely

constituted as metaphors for underlying code processes. John Conway’s Game of Life,

the founding work of generative artificial life, provides an exemplary instance (Conway,

1970). The visual elements – the abstract grid of squares and the flickering play of

‘gliders’, ‘blinkers’ and other forms of ‘life’ – provide a means of explicating the rules,

of playing them out in a sensible, visible manner.

In my view, the exclusive emphasis on critical self-reflection serves as an escape from

the risk of software art, a disengagement from the dimension of process. It represents an

effort to portray the relation to software in terms that entirely correspond to a fantasy of

assured radical aesthetic practice. In this manner, it disregards software art’s dependence

upon the discursive space of conventional software and its necessary complicity with the

language of instrumental functioning. Overall, there is a need to conceive the medium of

software and the critical character of software art in more subtle terms. Software art can

123

enable neither a pure gesture of formalism nor an entirely self-collected moment of

reflective critique. It inhabits a messier and more uncertain terrain.

In relation to formalism, although at one level software art manifests a return to the

notion of a medium (a space of writing, of craft), at another level it abandons the

reassuring character of a traditional medium; form and matter are no longer immanently

combined, they slip apart. Instead of a complex single aesthetic substance (the organic

unity of a work), there is a play of abstraction, layering, disappearance and disguise.

Furthermore, the material space of software writing demands a thinking of the cultural

dimensions of order and algorithmic process. It is not easily or adequately reducible to a

nakedly formal potential.

Similarly, critical-cultural software cannot maintain the pretence of pure opposition. Its

engagement can never be simply critical. Fuller’s notion of ‘speculative’ software

practice (Fuller, 2003: 29) provides a means of describing an exploratory, typically

anachronistic work of tinkering with aspects of the software heritage that can potentially

shape all kinds of relations between processes of imaginative making and critical

reflection.

Overall, my enquiry suggests that the genuine political potential of software art emerges

less in terms of explicit efforts at deconstruction than in terms of a rigorous (and self-

consciously anachronistic) engagement with the technological tradition. It is by finding

one’s way (and becoming lost) in this complex technical-discursive space that other

possibilities emerge. Software art, in my view, opens up an intimate relation to processes

of operation and making and unsettles narrowly critical views of art practice. It risks the

unconsciousness of mechanism. It pursues and reflects upon this risk. It discovers in this

risk a source of inspiration.

124

Bibliography

8-Bit Collective (Beige programming ensemble) (n.d.). [website]. http://www.post-data.org/beige/

 (accessed 23 January 2007).

Adorno, T. (1997). Aesthetic Theory. London & New York, Continuum. First published in

1970.

Adorno, T. and Horkheimer, M. (1982). ‘The Culture Industry: Enlightenment as Mass

Deception’, in Curran, J., Gurevitch, M. and Woolacott, J. (eds). Mass

Communication and Society. London, Open University Press, pp. 349-383. First

published in 1947.

Adorno, T. and Horkheimer, M. (2000). 'The Concept of Enlightenment', in O'Connor, B.

(ed). The Adorno Reader. London, Blackwell Publishing, pp. 156-173. First published

1944.

Agar, J. (2001). Turing and the Universal Machine: The Making of the Modern Computer.

Cambridge, Icon Books.

Agile Alliance (n.d.). [website]. http://www.agilealliance.org (accessed 8

January 2007).

Aristotle (350 BC c.) Nichomachean Ethics.

http://classics.mit.edu/Aristotle/nicomachean.html (accessed 4 January 2007).

Aristotle (1965) On the Art of Poetry, in Dorsch, T.S. (ed). Classical Literary

Criticism.

Great Britain, Penguin Books, pp. 31-75. First published: undated.

Arns, I. (2004). ‘Read_Me, Run_Me, Execute_Me: Software Art and its Discontents, or: it's

the Perfomativity of Code, Stupid!’, in Goriunova, O. and Shulgin, A. (eds).

read_me: Software Art & Cultures. Arhus, Aarhus University Press, pp. 176-188.

Babbage, C. (2005). 'Of the Analytical Engine', in Norman, M. (ed). From Gutenberg to the

Internet: A Sourcebook on the History of Information Technology. Novato,

California, thehistoryofscience.com., pp. 281-293, First published 1864.

Banzi, M. (2006). ‘Getting Started with Arduino’.

125

http://classics.mit.edu/Aristotle/nicomachean.html
http://www.agilealliance.org/
http://www.post-data.org/beige/

http:www.arduino.cc/en/uploads/Booklet/Arduino_Booklet02.pdf (accessed 15

January 2007).

Barthes, R. (1981). Camera Lucida. New York, Hill and Wang.

Batchen, G. (2006). ‘Electricity Made Visible’, in Chun, W. H. K. and Keenan, T. (eds). New

Media/Old Media. New York & London, Routledge, pp. 27-44.

Beige (programming ensemble) (2001). ‘Deadtech: Post-Data in the Age of Low Potential’.

http://www.epidemic.ws/biennale_press/deadtech.htm (accessed 16 December 2006).

Bergson, H. (1911). Creative Evolution. New York, Henry Holt and Company.

Blais, J. and Ippolito, J. (2006). At the Edge of Art. London, Thames & Hudson.

Blast Theory (2004). http://www.blasttheory.co.uk/ (website, accessed 17 December 2006).

Borevitz, B. (2004). ‘Super-Abstract: Software Art and a Redefinition of Abstraction’, in

Goriunova, O. and Shulgin, A. (eds). read_me: Software Art & Cultures. Arhus,

Denmark, University of Aarhus, pp.298-312.

Brown, P. (2000). ‘Stepping Stones in the Mist’.

http://www.paul-brown.com/WORDS/STEPPING.HTM (accessed 20 December

2006).

Brown, P. (2003). ‘The Idea Becomes a Machine: AI and Alife in Early British Computer

Arts’. Consciousness Reframed: Art and Consciousness in the Post-biological Era

(5th CAiiA International Research Conference), Caerleon UWCN Wales UK.

http://www.paul-brown.com/WORDS/CR2003.PDF (accessed 20 December 2006)

Burger, P. (1984). Theory of the Avant-Garde. Minneapolis, Minnesota, University of

Minnesota Press.

Chesher, C. (2001). Computers as Invocational Media (unpublished PhD thesis). Sydney,

Macquarie University.

Chun, W. H. K. and Keenan, T. (eds) (2006). New Media, Old Media. New York and

London, Routledge.

Copeland, J. (2004). ‘Computation’, in L. Floridi (ed). Philosophy of Computing and

Information. Malden, Massachusetts, Blackwell Publishing, pp. 4-6.

Cramer, F. (2001). untitled comment on Manovich.

http://absoluteone.ljudmila.org/cream.php (accessed 21 December 2006).

Cramer, F. (2002). ‘Concepts, Notations, Software, Art’. Seminar for Allegmeine und

126

http://absoluteone.ljudmila.org/cream.php
http://www.paul-brown.com/WORDS/CR2003.PDF
http://www.paul-brown.com/WORDS/STEPPING.HTM
http://www.blasttheory.co.uk/
http://www.epidemic.ws/biennale_press/deadtech.htm

Vergleischende Literaturwissenschaft.

Cramer, F. (2005). Words Made Flesh. Rotterdam, Piet Zwart Institute Media Design

Research.

Cramer, F. and Gabriel, U. (2001). ‘Software Art’. Transmediale.01 Arts Festival, Berlin.

Crystalpunk (n.d.). ‘Crystalpunk: The Chain Reaction Glitterati’. [website]

http://socialfiction.org (accessed 13 January 2007).

Deleuze, G. (1986). Cinema 1: The Movement Image. Minneapolis, Minnesota, The Athlone

Press.

Derrida, J. (1976). Of Grammatology. Baltimore & London, The Johns Hopkins University

Press.

Druckrey, T. (ed.) (1999). Ars Electronica: Facing the Future. Cambridge, Massachusetts,

The MIT Press.

Duchamp, M. (1973). “The Green Box”, in Sanouillet, M. and Peterson, E. (eds). The

Writings of Marcel Duchamp. New York, Da Capo Press, pp. 26-71. First published

1934.

Eagleton, T. (1990). The Ideology of the Aesthetic. Oxford and Cambridge, Massachusetts,

Basil Blackwell.

Eisenstein, S. (1986). The Film Sense. London, Faber and Faber Ltd. First published in 1943.

Feynman, R. P. (1996). Lectures on Computation. Edited by Hey, A. J. G. and Allen, R. W.

London, Penguin Books.

Farouzan, B. (2003). Foundations of Computer Science: From Data Manipulation to Theory

of Computation. Canada, Brooks/Cole - Thomson Learning.

Free Software Foundation (n.d.). http://www.fsf.org / (website, accessed 3 January 2007).

Fuller, M. (2003). Behind the Blip: Essays on the Culture of Software. Brooklyn, New York,

Autonomedia.

Fuller, M. (2005). ‘Freaks of Number’, in Cox, G. and Krysa, J. (eds). Data Browser 02:

Engineering Culture - On 'the Author as (Digital) Producer'. London, Autonomedia,

pp. 161-175.

Gamma, E., et al. (1995). Design Patterns: Elements of Reusable Object-Oriented

Software. Upper Saddle River, New Jersey, Addison & Wesley.

Gere, C. (2002). Digital Culture. London, Reaktion Books.

127

http://www.fsf.org/
http://socialfiction.org/

Goriunova, O. and Shulgin, A. (2004). read_me: Software Art & Cultures. Denmark, Aarhus

University Press.

128

Graham, P. (2003). ‘Hackers and Painters’. http://www.paulgraham.com/hp.html

(accessed 15 November 2006).

Hansen, M. (2004). New Philosophy for New Media. Cambridge, Massachusetts and London,

MIT Press.

Heidegger, M. (1978). ‘The Question Concerning Technology’, in Krell, D. F. (ed). Martin

Heidegger: Basic Writings. London, Thames & Hudson, pp. 284-317. First

published 1953.

Horstmann, C. and Cornell, G. (2005). Core Java (Vols. 1 & 2). Santa Clara, California, Sun

Microsystems Press.

Huyssen, A. (1986) After the Great Divide: Modernism, Mass Culture, Postmodernism.

Bloomington and Indianapolis, Indiana University Press

IPerG. (n.d.). Integrated Project on Pervasive Gaming. http://iperg.sics.se/ (accessed 25

November

2006).

Jaschko, S. (2003) ‘Space-Time Correlations Focused in Film Objects and Interactive Video’

in Shaw, J. and Weibel, P. (eds.) Future Cinema: The Cinematic Imaginary After

Film. Cambridge, Massachusetts, ZKM and The MIT Press, pp. 430-435.

Johansson, T. D. (2004). ‘Mise en Abyme in Software Art: A Comment to Florian Cramer’,

in Goriunova, O. and Shulgin, A. (eds). read_me: Software Art & Cultures. Arhus,

Denmark, Aarhus University Press, pp. 150-159.

Kant, I. (1980). Kant. ‘Great Books of the Western World’ Series, edited by Adler, J. and

Brockway, W. Chicago, University of Chicago Press (Encyclopedia Britannica, Inc.).

First published 1790.

Kay, A. (2003). From video 'The History of the Personal Workstation' (1986), in Wardrip-

Fruin, N. and Montfort, N. (eds). New Media Reader. Cambridge, Massachusetts, The

MIT Press, pp. 393-404..

Kay, A. and Goldberg, A. (2003). 'Personal Dynamic Media', in Wardrip-Fruin, N. and

Montfort, N. (eds). The New Media Reader. Cambridge, Massachusetts, The MIT

Press, pp. 393-404. First published in 1977.

129

http://iperg.sics.se/
http://www.paulgraham.com/hp.html

Kittler, F. (1999). 'On the Implementation of Knowledge - Towards a Theory of Hardware’.

http://www.hydra.umu.edu/kittler/implement.html (accessed 15 January

2007).

Knuth, D. (1973 -1998). The Art of Computer Programming. Reading, Massachusetts,

Addison-Wesley.

Krauss, R. (1999). A Voyage on the North Sea: Art in the Age of the Post-Medium

Condition. London, Thames & Hudson.

Leigh, A. and Atkinson, R. D. (2001). ‘Clear Thinking on the Digital Divide’.

http://www.ppionline.org/documents/digital_divide.pdf (accessed 23

December 2006)

Levy, S. (1984). Hackers: Heroes of the Computer Revolution. New York, Anchor

Press/Doubleday.

Lillemose, J. (2004). ‘A Re-Declaration of Dependence - Software Art in a Cultural Context

It Can't Get out of’, in Goriunova, O. and Shulgin, A. (eds). read_me: Software Art &

Cultures. Arhus, Denmark, University of Aarhus, pp. 136-149.

Macquarie (1992). The Macquarie Dictionary (Second Edition). Sydney, Macquarie Library

Pty Ltd.

Malina, F. (1979). Visual Art, Mathematics & Computers. Oxford, Pergamon Press.

Manovich, L. (1996). ‘The Death of Computer Art’.

http://www.thenetnet.com/schmeb/schemb12.html (accessed 21 December

2006).

Manovich, L. (2001). The Language of New Media. Cambridge Massachusetts, MIT Press.

Manovich, L. (2005). ‘Remixability & Modularity.’ http://www.manovich.net/ (accessed

21 December 2006)

Manovich, L. (2006). ‘Flash Generation’, in Chun, W. H. K. and Keenan, T. (eds). New

Media/Old Media: A History and Theory Reader. London & New York, Routledge,

pp. 209-218.

Nettime mailing list (1999). www.nettime.org (accessed 12 December 2006).

Nietzsche, F. (1968). The Will to Power. New York, Vintage Books, Random House.

Norman, J. (2005). From Gutenberg to the Internet: A Sourcebook on the History of

Information Technology. Novato, California, historyofscience.com.

130

http://www.nettime.org/
http://www.manovich.net/
http://www.thenetnet.com/schmeb/schemb12.html
http://www.ppionline.org/documents/digital_divide.pdf
http://www.hydra.umu.edu/kittler/implement.html

Paul, C. (2003). Digital Art. London, Thames & Hudson.

Plato (c. 380 BC). Ion. http://classics.mit.edu/Plato/ion.html (accessed 6 January

2007).

Plato (1955). The Republic. Translated by D. P. Lee. London, Penguin Books. First

Published c.360 BC.

Read_Me 1.2 festival jury (2002). ‘Read_Me 1.2 Software Art/Software Art Games festival

jury statement’. http://www.macros-center.ru/read_me/adden.htm (accessed 13

December 2006).

Read_Me 1.2 festival organisers (2002). ‘Read_Me 1.2 Software Art/Software Art Games

festival call for entries’. http://www.macros-center.ru/read_me/abouten.htm

(accessed 13 December 2006).

Reichardt, J. (ed) (1971). Cybernetics, Art and Ideas. New York, New York Graphic

Society.

Saint-Simon, H. (1975). Henri Saint-Simon 1760-1825: Selected Writings on Science,

Industry and Social Organisation. Edited by K. Taylor. London, Croom Helm Ltd.

Salen, K. and Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals.

Cambridge Massachusetts, The MIT Press.

Selectparks (n.d.). [website]. http://www.selectparks.net (accessed 21 December 2006).

Shanken, E. A. (1998). ‘The House that Jack Built: Jack Burnham's Concept of "Software" as

a Metaphor for Art’. Leonardo Electronic Almanac 6(10).

http://www.duke.edu/~giftwrap/House.html (accessed 23 July 2006).

Shanken, E. A. (2004). ‘Art in the Information Age: Technology and Conceptual Art’, in

Corris, M. (ed). Conceptual Art: Theory, Myth, Practice. Cambridge, England,

Cambridge University Press, pp. 235-250.

Small, P. (1996). Lingo Sorcery: The Magic of Lists, Objects and Intelligent Agents.

Chichester, England, Wiley.

Stallman, R. (n.d). [website]. http://www.stallman.org (accessed 2 January 2007).

Stiegler, B. (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford California,

Stanford University Press.

Transmediale.01 Media Arts festival jury (2001). ‘Transmediale.01 Media Arts festival jury

131

http://www.stallman.org/
http://www.duke.edu/~giftwrap/House.html
http://www.selectparks.net/
http://www.macros-center.ru/read_me/abouten.htm
http://www.macros-center.ru/read_me/adden.htm
http://classics.mit.edu/Plato/ion.html

statement’. http://transmediale.de/01/de/s_juryStatement.htm (accessed 15

December 2006).

Transmediale.01 Media Arts festival organizers (2001). ‘Call for Papers’.

http://transmediale.de/01/de/s_juryStatement.htm (accessed 15 December

2006).

Tribe, M. and Reena, J. (2006) New Media Art. Edited by U. Grosenick. Koln,

Germany, Taschen.

Turing, A. (1995). 'On Computable Numbers, with an Application to the

Entscheidungsproblem' (extract), in Norman, M. (ed). From Gutenberg to the

Internet: A Sourcebook on the History of Information Technology. Novato,

California, historyofscience.com. First published in 1936.

Weber, M. (1946). Max Weber: Essays in Sociology. Edited by H. H. Gerth. and C. W. Mills.

New York, Oxford University Press.

Weibel, P. and Druckrey, T. (eds) (2001). Net Condition: Art and Global Media. Cambridge,

Massachusetts, ZKM and The MIT Press

Whitelaw, M. (2004). Metacreation: Art and Artificial Life. Cambridge, Massachusetts, MIT

Press.

Wikipedia (nd). ‘Constructivism’.

http://en.wikipedia.org/wiki/Constructivism_(art) (accessed 23 December

2006).

132

http://en.wikipedia.org/wiki/Constructivism_(art)
http://transmediale.de/01/de/s_juryStatement.htm
http://transmediale.de/01/de/s_juryStatement.htm

Creative Works

Adobe (n.d). Illustrator. [Computer program].

Arcangel, C. (2003). Super Mario Clouds. http://www.beigerecords.com/cory/21c/21c.html

(accessed 22 November 2006).

Banzi, M. (n.d.) Arduino Microcontroller and Integrated Development Environment.

[computer hardware and software]. http://www.arduino.cc (accessed 22 December

2006).

Blast Theory (2004). I Like Frank. Adelaide, South Australia, Adelaide Fringe Festival. [new

media work]. http://www.ilikefrank.com (accessed 16 December 2006).

Blender (n.d.). [computer program]. http://blender.org (accessed 12 December 2006).

Brooks, S. (2002). Global City Front Page. New York, Whitney Museum CODeDOC

Exhibition. [software art work].

http://artport.whitney.org/commissions/codedoc/Brooks (accessed 12 December

2006).

Carmack, J. and Romero, J. (1993). Doom. [computer game].

Carmack, J. and Romero, J. (1996). Quake. [computer game].

Conway, J. (1970). Game of Life. First published in Gardner, M. mathematical games

column, Scientific American, October 1970. [paper-based mathematical artificial life

project].

Dagget, M. (2002). Deskswap. [software art work].

http://www.markdaggett.com/get.php?page=deskswap (accessed 23 December

2006).

Duchamp, M. (1915-23). Large Glass – The Bride Stripped Bare by Her Bachelors, Even.

Eclipse Foundation (2004). Eclipse 3.0. [computer program].

Frasca, G. (2003). September 12, A Toy Story. [computer game].

Fry, B. and Reas, C. (2001, continuing) Processing. [computer program]

http://processing.org (accessed 3 December 2006).

Galloway, A. (2002). What You See is What You Get. New York, Whitney Museum

CODeDOC Exhibition. [software art work].

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

133

http://artport.whitney.org/commissions/codedoc/index.shtml
http://processing.org/
http://www.markdaggett.com/get.php?page=deskswap
http://artport.whitney.org/commissions/codedoc/Brooks
http://blender.org/
http://www.ilikefrank.com/
http://www.arduino.cc/

Glick, R. and Voevodin, L. (1999-2006). 24Hr Panoramas. [video art project].

IOD (1997). Web Stalker. London. [software art work]. http://bak.spc.org/iod/

(accessed 3 January 2007).

JODI (1998). SOD. [software art work]. http://sod.jodi.org/ (accessed 21 December

2006).

JODI (2002). Untitled Game. [software art work]. http://www.untitled-game.org

(accessed 21 December 2006).

JOGL (Java Bindings to Open GL API). (n.d.). [3D library]. https://jogl.dev.java.net/

(accessed 18 December 2006).

Karhalev, E. and Khimin, I. (2002). ScreenSaver. [software art work].

http://www.404pro.com/desoft (accessed 16 December 2006).

Klima, J. (2002). Jack and Jill. New York, Whitney Museum CODeDOC Exhibition.

[software art work].

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Levin, G. (2000). Audiovisual Environment Suite. [computer program].

http://acg.media.mit.edu/people/golan/aves (accessed 2 January 2007).

Levin, G. (2002). AxisApplet. New York, Whitney Museum CODeDOC Exhibition.

[software art work].

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Lialina, O. (1996). My Boyfriend Came Back from the War. [net art work].

http://myboyfriendcamebackfromth.ewar.ru/ (accessed 16 December 2006).

Macromedia (n.d.). Director. [computer program].

Macromedia (n.d.). Flash. [computer program].

Maeda, J. (n.d.). Design by Numbers. Cambridge Massachusetts, MIT. [computer program].

Marker, C. (1983). Sans Soleil. [film].

McCoy, K. (2002). Circler. New York, Whitney Museum CODeDOC Exhibition. [software

art work]. http://artport.whitney.org/commissions/codedoc/index.shtml

(accessed 6 December 2006).

134

http://artport.whitney.org/commissions/codedoc/index.shtml
http://myboyfriendcamebackfromth.ewar.ru/
http://artport.whitney.org/commissions/codedoc/index.shtml
http://acg.media.mit.edu/people/golan/aves
http://artport.whitney.org/commissions/codedoc/index.shtml
http://www.404pro.com/desoft
https://jogl.dev.java.net/
http://www.untitled-game.org/
http://sod.jodi.org/
http://bak.spc.org/iod/

Napier, M. (1998). Shredder. [software art work].

http://www.potatoland.org/shredder/ (accessed 6 December 2006).

Napier, M. (2002). SpringyDotsApplet. New York, Whitney Museum CODeDOC Exhibition.

[software art work].

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Nimoy, J. (2002). Textension. [software art work]. http://www.jtnimoy.com/textension/

(accessed 2 January 2007).

The Ogre (n.d.). [3D library]. http://ogre3d.org (accessed 14 December 2006).

Paley, B. (2002). CodeProfiles. New York, Whitney Museum CODeDOC Exhibition.

[software art work].

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Pfeiffer, P. (2001). The Long Count, in Hansen, M. (2004). New Philosophy for New Media.

Cambridge, Massachusetts and London, MIT Press, p. 30. [new media artwork].

Reinhart, M. and Widrich, V. (1992-2002). tx-transform, in Shaw, J. and Weibel, P. (eds).

(2003). Future Cinema: The Cinematic Imaginary After Film. Cambridge,

Massachusetts, ZKM and The MIT Press, pp. 442-443. [new media art work].

Sauter, J. and Lusebruk, D. (1995). ‘Invisible Shape of Things Past’, in Shaw, J. and Weibel,

P. (eds.) (2003) Future Cinema: The Cinematic Imaginary After Film. Cambridge,

Massachusetts, ZKM and The MIT Press, pp. 436-439 [new media art work]

Schmitt, A. Vexation 1. [software art work].http://www.gratin.org/as/ (accessed 21

December 2006).

Snibbe, S. (2002). Tripolar. New York, Whitney Museum CODeDOC Exhibition. [software

art work]

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Stallman, R. (1975). Emacs. [computer program].

Sutherland, I. (1962). Sketchpad. [computer program].

Tatlin, V. (1920). Monument to the Third International. [sculpture/architectural design].

135

http://artport.whitney.org/commissions/codedoc/index.shtml
http://www.gratin.org/as/
http://artport.whitney.org/commissions/codedoc/index.shtml
http://ogre3d.org/
http://www.jtnimoy.com/textension/
http://artport.whitney.org/commissions/codedoc/index.shtml
http://www.potatoland.org/shredder/

Utterbach, C. (2001-2). Liquid Time. in Shaw, J. and Weibel, P. (eds.) (2003) Future

Cinema: The Cinematic Imaginary After Film. Cambridge, Massachusetts, ZKM and

The MITPress, p.434. [new media art work].

Utterback, C. (2002). Linescape. New York, Whitney Museum CODeDOC Exhibition.

 [software art work].

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Vertov, D. (1929). Man with a Movie Camera. [film]

Ward, A. (2001). Signwave Auto-Illustrator. [software art work].

http://www.gratin.org/as/ (accessed 12 November 2006).

Wattenberg, M. (2002). ConnectApplet. New York, Whitney Museum CODeDOC

Exhibition. [software art work].

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Wisniewski, M. (2002). The Meaning of Life Expressed in Seven Lines of Code. New York,

Whitney Museum CODeDOC Exhibition.

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6

December 2006).

Xith3D (n.d.). [3D library]. http://www.xith.org (accessed 14 December 2006).

136

http://www.xith.org/
http://artport.whitney.org/commissions/codedoc/index.shtml
http://artport.whitney.org/commissions/codedoc/index.shtml
http://www.gratin.org/as/
http://artport.whitney.org/commissions/codedoc/index.shtml

	Introduction
This chapter addresses the dilemma of position discussed in the previous chapter. It is concerned with how the field of software art conceives its relation to the industrial-technological infrastructure that surrounds and enables it. Specifically, how does it reflect upon the phenomenon of the 3D games engine? This chapter considers a range of tactical responses to the dilemmas of scale, encapsulation and conventional aesthetics that the game engine raises for software art. The main focus is on the strategy of anachronism. Anachronism resists the rhetoric of technological novelty, working instead to discover areas of creative purchase within the detritus of industrial (commercial gaming) progress.

